209
Views
50
CrossRef citations to date
0
Altmetric
Articles

NURBS-based thermal buckling analysis of graphene platelet reinforced composite laminated skew plates

ORCID Icon
Pages 90-108 | Received 05 Jun 2019, Accepted 22 Sep 2019, Published online: 11 Oct 2019

References

  • K. S. Novoselov et al., “Electric filed effect in atomically thin carbon films,” Science, vol. 306, no. 5696, pp. 666–669, 2004. DOI: 10.1126/science.1102896.
  • C. D. Reddy, S. Rajendran, and K. M. Liew, “Equilibrium configuration and continuum elastic properties of finite sized graphene,” Nanotechnology, vol. 17, no. 3, pp. 864–870, 2006. DOI: 10.1088/0957-4484/17/3/042.
  • F. Scarpa, S. Adhikari, and A. S. Phani, “Effective elastic mechanical properties of single layer graphene sheets,” Nanotechnology, vol. 20, no. 6, pp. 065709, 2009. DOI: 10.1088/0957-4484/20/6/065709.
  • E. Cadelano, P. L. Palla, S. Giordano, and L. Colombo, “Nonlinear elasticity of monolayer graphene,” Phys. Rev. Lett., vol. 102, no. 23, pp. 235502, 2009. DOI: 10.1103/PhysRevLett.102.235502.
  • Z. Ni, H. Bu, M. Zou, H. Yi, K. Bi, and Y. Chen, “Anisotropic mechanical properties of graphene sheets from molecular dynamics,” Phys. B: Condens. Matter, vol. 405, no. 5, pp. 1301–1306, 2010. DOI: 10.1016/j.physb.2009.11.071.
  • Y. Y. Zhang, C. M. Wang, Y. Cheng, and Y. Xiang, “Mechanical properties of bilayer graphene sheets coupled by sp3 bonding,” Carbon, vol. 49, no. 13, pp. 4511–4517, 2011. DOI: 10.1016/j.carbon.2011.06.058.
  • S. Stankovich et al., “Graphene-based composite materials,” Nature, vol. 442, no. 7100, pp. 282–286, 2006. DOI: 10.1038/nature04969.
  • J. R. Potts, D. R. Dreyer, C. W. Bielawski, and R. S. Ruoff, “Graphene-based polymer nanocomposites,” Polymer, vol. 52, no. 1, pp. 5–25, 2011. DOI: 10.1016/j.polymer.2010.11.042.
  • T. K. Das and S. Prusty, “Graphene-based polymer composites and their applications,” Polym. Plast. Technol. Eng., vol. 52, no. 4, pp. 319–331, 2013. DOI: 10.1080/03602559.2012.751410.
  • M. A. Rafiee, J. Rafiee, Z. Wang, H. Song, Z. Z. Yu, and N. Koratkar, “Enhanced mechanical properties of nanocomposites at low graphene content,” ACS Nano, vol. 3, no. 12, pp. 3884–3990, 2009. DOI: 10.1021/nn9010472.
  • X. Zhao, Q. Zhang, D. Chen, and P. Lu, “Enhanced mechanical properties of graphene-based poly(vinyl alcohol) composites,” Macromolecules, vol. 43, no. 5, pp. 2357–2363, 2010. DOI: 10.1021/ma902862u.
  • M. A. Rafiee, J. Rafiee, Z. Z. Yu, and N. Koratkar, “Buckling resistant graphene nanocomposites,” Appl. Phys. Lett., vol. 95, no. 22, pp. 223103, 2009. DOI: 10.1063/1.3269637.
  • A. Parashar and P. Mertiny, “Representative volume element to estimate buckling behavior of graphene/polymer nanocomposite,” Nanoscale Res. Lett., vol. 7, no. 1, pp. 515–520, 2012. DOI: 10.1186/1556-276X-7-515.
  • D. D. Kulkarni, I. Choi, S. S. Singamaneni, and V. V. Tsukruk, “Graphene oxide-polyelectrolyte nanomembranes,” ACS Nano, vol. 4, no. 8, pp. 4667–4676, 2010. DOI: 10.1021/nn101204d.
  • F. Lin, Y. Xiang, and H. S. Shen, “Temperature dependent mechanical properties of graphene reinforced polymer nanocomposites—a molecular dynamics simulation,” Compos. Part B: Eng., vol. 111, pp. 261–269, 2017. DOI: 10.1016/j.compositesb.2016.12.004.
  • Y. Kiani and M. Mirzaei, “Enhancement of non-linear thermal stability of temperature dependent laminated beams with graphene reinforcements,” Compos. Struct., vol. 186, pp. 114–122, 2018. DOI: 10.1016/j.compstruct.2017.11.086.
  • H. S. Shen, Y. Xiang, and F. Lin, “Nonlinear bending and thermal postbuckling of functionally graded graphene-reinforced composite laminated beams resting on elastic foundations,” Eng. Struct., vol. 140, pp. 89–97, 2017. DOI: 10.1016/j.engstruct.2017.02.069.
  • H. S. Shen, Y. Xiang, F. Lin, and D. Hui, “Buckling and postbuckling of functionally graded graphene-reinforced composite laminated plates in thermal environments,” Compos. Part B: Eng., vol. 119, pp. 67–78, 2017. DOI: 10.1016/j.compositesb.2017.03.020.
  • H. S. Shen, Y. Xiang, and F. Lin, “Thermal buckling and postbuckling of functionally graded graphene-reinforced composite laminated plates resting on elastic foundations,” Thin-Walled Struct., vol. 118, pp. 229–237, 2017. DOI: 10.1016/j.tws.2017.05.006.
  • Y. Yu, H. S. Shen, H. Wang, and D. Hui, “Postbuckling of sandwich plates with graphene-reinforced composite face sheets in thermal environments,” Compos. Part B: Eng., vol. 135, pp. 72–83, 2018. DOI: 10.1016/j.compositesb.2017.09.045.
  • M. Mirzaei and Y. Kiani, “Isogeometric thermal buckling analysis of temperature dependent FG graphene reinforced laminated plates using NURBS formulation,” Compos. Struct., vol. 180, pp. 606–616, 2017. DOI: 10.1016/j.compstruct.2017.08.057.
  • Y. Kiani, “NURBS-based isogeometric thermal postbuckling analysis of temperature dependent graphene reinforced composite laminated plates,” Thin-Walled Struct., vol. 125, pp. 211–219, 2018. DOI: 10.1016/j.tws.2018.01.024.
  • H. S. Shen, Y. Xiang, and Y. Fan, “Postbuckling of functionally graded graphene-reinforced composite laminated cylindrical panels under axial compression in thermal environments,” Int. J. Mech. Sci., vol. 135, pp. 398–409, 2018. DOI: 10.1016/j.ijmecsci.2017.11.031.
  • H. S. Shen and Y. Xiang, “Postbuckling behavior of functionally graded graphene-reinforced composite laminated cylindrical shells under axial compression in thermal environments,” Comput. Methods Appl. Mech. Eng., vol. 330, pp. 64–82, 2018. DOI: 10.1016/j.cma.2017.10.022.
  • H. S. Shen and Y. Xiang, “Postbuckling of functionally graded graphene-reinforced composite laminated cylindrical shells subjected to external pressure in thermal environments,” Thin-Walled Struct., vol. 124, pp. 151–160, 2018. DOI: 10.1016/j.tws.2017.12.005.
  • H. S. Shen and Y. Xiang, “Thermal buckling and postbuckling behavior of FG-GRC laminated cylindrical shells with temperature-dependent material properties,” Meccanica, vol. 54, no. 1–2, pp. 283–297, 2019. DOI: 10.1007/s11012-019-00945-0.
  • Y. Kiani, “Buckling of functionally graded graphene reinforced conical shells under external pressure in thermal environment,” Compos. Part B: Eng., vol. 159, pp. 128–137, 2019. DOI: 10.1016/j.compositesb.2018.08.052.
  • J. Yang, H. Wu, and S. Kitipornchai, “Buckling and postbuckling of functionally graded multilayer graphene platelet-reinforced composite beams,” Compos. Struct., vol. 161, pp. 111–118, 2017. DOI: 10.1016/j.compstruct.2016.11.048.
  • Z. Yang, J. Yang, A. Liu, and J. Fu, “Nonlinear in-plane instability of functionally graded multilayer graphene reinforced composite shallow arches,” Compos. Struct., vol. 204, pp. 301–312, 2018. DOI: 10.1016/j.compstruct.2018.07.072.
  • S. Kitipornchai, D. Chen, and J. Yang, “Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets,” Mater. Des., vol. 116, pp. 656–665, 2017. DOI: 10.1016/j.matdes.2016.12.061.
  • M. Song, J. Yang, S. Kitipornchai, and W. Zhu, “Buckling and postbuckling of biaxially compressed functionally graded multilayer graphene nanoplatelet-reinforced polymer composite plates,” Int. J. Mech. Sci., vol. 131, pp. 345–355, 2017. DOI: 10.1016/j.ijmecsci.2017.07.017.
  • H. Wu, S. Kitipornchai, and J. Yang, “Thermal buckling and postbuckling of functionally graded graphene nanocomposite plates,” Mater. Des., vol. 132, pp. 430–441, 2017. DOI: 10.1016/j.matdes.2017.07.025.
  • M. Song, J. Yang, and S. Kitipornchai, “Bending and buckling analyses of functionally graded polymer composite plates reinforced with graphene nanoplatelets,” Compos. Part B: Eng., vol. 134, pp. 106–113, 2018. DOI: 10.1016/j.compositesb.2017.09.043.
  • J. Yang, D. Chen, and S. Kitipornchai, “Buckling and free vibration analyses of functionally graded graphene reinforced porous nanocomposite plates based on Chebyshev-Ritz method,” Compos. Struct., vol. 193, pp. 281–294, 2018. DOI: 10.1016/j.compstruct.2018.03.090.
  • Y. Wang, C. Feng, Z. Zhao, and J. Yang, “Buckling of graphene platelet reinforced composite cylindrical shell with cutout,” Int. J. Struct. Stab. Dyn., vol. 18, no. 3, pp. 1850040, 2018. DOI: 10.1142/S0219455418500402.
  • Y. Wang, C. Feng, Z. Zhao, F. Lu, and J. Yang, “Torsional buckling of graphene platelets (GPLs) reinforced functionally graded cylindrical shell with cutout,” Compos. Struct., vol. 197, pp. 72–97, 2018. DOI: 10.1016/j.compstruct.2018.05.056.
  • Y. Wang, C. Feng, Z. Zhao, and J. Yang, “Eigenvalue buckling of functionally graded cylindrical shells reinforced with graphene platelets (GPL),” Compos. Struct., vol. 202, pp. 38–46, 2018. DOI: 10.1016/j.compstruct.2017.10.005.
  • N. Valizadeh, S. Natarajan, O. A. Gonzalez-Estrada, T. Rabczuk, T. Q. Bui, and S. P. A. Bordas, “NURBS-based finite element analysis of functionally graded plates: Static bending, vibration, buckling and flutter,” Compos. Struct., vol. 99, pp. 309–326, 2013. DOI: 10.1016/j.compstruct.2012.11.008.
  • Y. Kiani, “Thermal post-buckling of temperature dependent sandwich plates with FG-CNTRC face sheets,” J. Therm. Stress., vol. 41, no. 7, pp. 866–882, 2018. DOI: 10.1080/01495739.2018.1425645.
  • Y. Kiani, “Isogeometric large amplitude free vibration of graphene reinforced laminated plates in thermal environment using NURBS formulation,” Comput. Methods Appl. Mech. Eng., vol. 332, pp. 86–101, 2018. DOI: 10.1016/j.cma.2017.12.015.
  • Y. Kiani, “Thermal post-buckling of FG-CNT reinforced composite plates,” Compos. Struct., vol. 159, pp. 299–306, 2017. DOI: 10.1016/j.compstruct.2016.09.084.
  • Y. Kiani, “Thermal buckling of temperature-dependent FG-CNT-reinforced composite skew plates,” J. Therm. Stress., vol. 40, no. 11, pp. 1442–1460, 2017. DOI: 10.1080/01495739.2017.1336742.
  • S. A. Fazelzadeh, S. Rahmani, E. Ghavanloo, and P. Marzocca, “Thermoelastic vibration of doubly-curved nano-composite shells reinforced by graphene nanoplatelets,” J. Therm. Stress., vol. 42, no. 1, pp. 1–17, 2019. DOI: 10.1080/01495739.2018.1524733.
  • T. J. R. Hughes, J. A. Cottrell, and Y. Bazilevs, “Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement,” Comput. Methods Appl. Mech. Eng., vol. 194, no. 39-41, pp. 4135–4195, 2005. DOI: 10.1016/j.cma.2004.10.008.
  • T. Kant and C. S. Babu, “Thermal buckling analysis of skew fibre-reinforced composite and sandwich plates using shear deformable finite element models,” Compos. Struct., vol. 49, no. 1, pp. 77–85, 2000. DOI: 10.1016/S0263-8223(99)00127-0.
  • M. S. S. Prabhu and S. Durvasula, “Thermal post-buckling characteristics of clamped skew plates,” Compos. Struct., vol. 6, no. 3, pp. 177–185, 1976. DOI: 10.1016/0045-7949(76)90027-4.
  • J. Torabi, R. Ansari, and R. Hasrati, “Numerical study on the thermal buckling analysis of CNT-reinforced composite plates with different shapes based on the higher-order shear deformation theory,” Eur. J. Mech. A Solids, vol. 73, pp. 144–160, 2019. DOI: 10.1016/j.euromechsol.2018.07.009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.