120
Views
18
CrossRef citations to date
0
Altmetric
Articles

Memory response for thermal distributions moving over a magneto-thermoelastic rod under Eringen’s nonlocal theory

ORCID Icon
Pages 72-89 | Received 01 Jun 2019, Accepted 30 Sep 2019, Published online: 01 Nov 2019

References

  • M. A. Biot, “Thermoelasticity and irreversible thermodynamics,” J. Appl. Phys., vol. 27, no. 3, pp. 240–253, 1956. DOI: 10.1063/1.1722351.
  • H. W. Lord and Y. Shulman, “A generalized dynamical theory of thermoelasticity,” J. Mech. Phys. Solids, vol. 15, no. 5, pp. 299–309, 1967. DOI: 10.1016/0022-5096(67)90024-5.
  • A. C. Eringen, Nonlocal Continuum Field Theories. New York: Springer Science & Business Media, 2002.
  • A. C. Eringen, “Nonlocal polar elastic continua,” Int. J. Eng. Sci., vol. 10, no. 1, pp. 1–16, 1972. DOI: 10.1016/0020-7225(72)90039-0.
  • A. C. Eringen, “On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves,” J. Appl. Phys., vol. 54, no. 9, pp. 4703–4710, 1983. DOI: 10.1063/1.332803.
  • A. C. Eringen and D. G. B. Edelen, “On nonlocal elasticity,” Int. J. Eng. Sci., vol. 10, no. 3, pp. 233–248, 1972. DOI: 10.1016/0020-7225(72)90039-0.
  • A. M. Zenkour and A. E. Abouelregal, “Nonlocal thermoelastic nanobeam subjected to a sinusoidal pulse heating and temperature-dependent physical properties,” Microsyst. Technol., vol. 21, no. 8, pp. 1767–1776, 2015. DOI: 10.1007/s00542-014-2294-5.
  • A. M. Zenkour, “Nonlocal thermoelasticity theory without energy dissipation for nano-machined beam resonators subjected to various boundary conditions,” Microsyst. Technol., vol. 23, no. 1, pp. 55–65, 2017. DOI: 10.1007/s00542-015-2703-4.
  • M. Bachher and N. Sarkar, “Nonlocal theory of thermoelastic materials with voids and fractional derivative heat transfer,” Waves Random Complex Medium, vol. 29, no. 4, pp. 595–613, 2018. DOI: 10.1080/17455030.2018.1457230.
  • A. E. Abouelregala, “Rotating magneto-thermoelastic rod with finite length due to moving heat sources via Eringen’s nonlocal model,” J. Comput. Appl. Mech., vol. 50, no. 1, pp. 118–126, 2019. DOI: 10.22059/JCAMECH.2019.275893.360.
  • S. Mondal, N. Sarkar, and N. Sarkar, “Waves in dual-phase-lag thermoelastic materials with voids based on Eringen’s nonlocal elasticity,” J. Therm. Stresses, vol. 42, no, 8, pp. 1035–1050, 2019. DOI: 10.1080/01495739.2019.1591249.
  • N. S. Al-Huniti, M. A. Al-Nimr, and M. Naji, “Dynamic response of a rod due to a moving heat source under the hyperbolic heat conduction model,” J. Sound Vib., vol. 242, no. 4, pp. 629–640, 2001. DOI: 10.1006/jsvi.2000.3383.
  • T. He, L. Cao, and S. Li, “Dynamic response of a piezoelectric rod with thermal relaxation,” J. Sound Vib., vol. 306, no. 3–5, pp. 897–907, 2007. DOI: 10.1016/j.jsv.2007.06.018.
  • I. A. Abbas, “Eigenvalue approach to fractional order generalized magneto-thermoelastic medium subjected to moving heat source,” J. Magn. Magn. Mater., vol. 377, pp. 452–459, 2015. DOI: 10.1016/j.jmmm.2014.10.159.
  • T. He and L. Cao, “A problem of generalized magneto-thermoelastic thin slim strip subjected to a moving heat source,” Math. Comput. Model., vol. 49, no. 7–8, pp. 1710–1720, 2009. DOI: 10.1016/j.mcm.2008.12.004.
  • A. Sur and M. Kanoria, “Fractional order two-temperature thermoelasticity with finite wave speed,” Acta Mech., vol. 223, no. 12, pp. 2685–2701, 2012. DOI: 10.1007/s00707-012-0736-7.
  • S. Mondal, S. H. Mallik, and M. Kanoria, “Fractional order two-temperature dual-phase-lag thermoelasticity with variable thermal conductivity,” Int. Sch. Res. Notices, vol. 2014, pp. 1–13, 2014. DOI: 10.1155/2014/646049.
  • I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, vol. 198. Elsevier, 1998.
  • K. Diethelm, The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type. New York: Springer Science & Business Media, 2010.
  • M. Caputo, “Linear models of dissipation whose Q is almost frequency independent II,” Geophys. J. Int., vol. 13, no. 5, pp. 529–539, 1967. DOI: 10.1111/j.1365-246X.1967.tb02303.x.
  • M. Caputo and M. Fabrizio, “A new definition of fractional derivative without singular kernel,” Progr. Fract. Differ. Appl., vol. 1, no. 2, pp. 73–85, 2015. DOI: 10.12785/pfda/010201.
  • J.-L. Wang and H.-F. Li, “Surpassing the fractional derivative: Concept of the memory-dependent derivative,” Comput. Math. Appl., vol. 62, no. 3, pp. 1562–1567, 2011. DOI: 10.1016/j.camwa.2011.04.028.
  • H. H. Sherief, A. M. A. El-Sayed, and A. A. El-Latief, “Fractional order theory of thermoelasticity,” Int. J. Solids Struct., vol. 47, no. 2, pp. 269–275, 2010. DOI: 10.1016/j.ijsolstr.2009.09.034.
  • M. A. Ezzat, A. S. El-Karamany, and A. A. El-Bary, “Generalized thermo-viscoelasticity with memory-dependent derivatives,” Int. J. Mech. Sci., vol. 89, pp. 470–475, 2014. DOI: 10.1016/j.ijmecsci.2014.10.006.
  • M. A. Ezzat, A. S. El-Karamany, and A. A. El-Bary, “Thermoelectric viscoelastic materials with memory-dependent derivative,” Smart Struct. Syst., vol. 19, no. 5, pp. 539–551, 2017. DOI: 10.12989/sss.2017.19.5.539.
  • S. Shaw and B. Mukhopadhyay, “A discontinuity analysis of generalized thermoelasticity theory with memory-dependent derivatives,” Acta Mech., vol. 228, no. 7, pp. 2675–2689, 2017. DOI: 10.1007/s00707-017-1853-0.
  • K. Lotfy and N. Sarkar, “Memory-dependent derivatives for photothermal semiconducting medium in generalized thermoelasticity with two-temperature,” Mech. Time-Depend. Mater., vol. 21, no. 4, pp. 519–534, 2017. DOI: 10.1007/s11043-017-9340-5.
  • S. Kant and S. Mukhopadhyay, “An investigation on responses of thermoelastic interactions in a generalized thermoelasticity with memory-dependent derivatives inside a thick plate,” Math. Mech. Solids, vol. 24, no. 8, pp. 2392–2409, 2019. DOI: 10.1177/1081286518755562.
  • A. Sur, P. Pal, and M. Kanoria, “Modeling of memory-dependent derivative in a fiber-reinforced plate under gravitational effect,” J. Therm. Stresses, vol. 41, no. 8, pp. 973–992, 2018. DOI: 10.1080/01495739.2018.1447316.
  • A. Sur and M. Kanoria, “Modeling of memory-dependent derivative in a fibre-reinforced plate,” Thin-Walled Struct., vol. 126, pp. 85–93, 2018. DOI: 10.1016/j.tws.2017.05.005.
  • P. Purkait, A. Sur, and M. Kanoria, “Thermoelastic interaction in a two dimensional infinite space due to memory dependent heat transfer,” Int. J. Adv. Appl. Math. Mech., vol. 5, no. 1, pp. 28–39, 2017.
  • N. Sarkar, D. Ghosh, and A. Lahiri, “A two-dimensional magneto-thermoelastic problem based on a new two-temperature generalized thermoelasticity model with memory-dependent derivative,” Mech. Adv. Mater. Struct., vol. 26, no. 11, pp. 957–966, 2019. DOI: 10.1080/15376494.2018.1432784.
  • S. Mondal, P. Pal, and M. Kanoria, “Transient response in a thermoelastic half-space solid due to a laser pulse under three theories with memory-dependent derivative,” Acta Mech., vol. 230, no. 1, pp. 179–199, 2019. DOI: 10.1007/s00707-018-2307-z.
  • S. Mondal, “Interactions due to a moving heat source in a thin slim rod under memory-dependent dual-phase lag magneto-thermo-visco-elasticity,” Mech. Time-Depend. Mater., 2019. DOI: 10.1007/s11043-019-09418-z.
  • S. Mondal and M. Kanoria, “Thermoelastic solutions for thermal distributions moving over thin slim rod under memory-dependent three-phase lag magneto-thermoelasticity,” Mech. Based Des. Struct. Mach., 2019. DOI: 10.1080/15397734.2019.1620529.
  • S. Mondal, A. Sur, and M. Kanoria, “Magneto-thermoelastic interaction in a reinforced medium with cylindrical cavity in the context of Caputo-Fabrizio heat transport law,” Acta Mech., 2019. DOI: 10.1007/s00707-019-02498-5.
  • S. Mondal, A. Sur, and M. Kanoria, “A memory response in the vibration of a microscale beam induced by laser pulse,” J. Therm. Stresses, vol. 42, no. 11, pp. 1415–1431, 2019. DOI: 10.1080/01495739.2019.1629854.
  • S. Mondal, A. Sur, and M. Kanoria, “Transient response in a piezoelastic medium due to the influence of magnetic field with memory-dependent derivative,” Acta Mech., vol. 230, no. 7, pp. 2325–2338, 2019. DOI: 10.1007/s00707-019-02380-4.
  • N. Sarkar and S. Mondal, “Transient responses in a two-temperature thermoelastic infinite medium having cylindrical cavity due to moving heat source with memory-dependent derivative,” ZAMM J. Appl. Math. Mech., vol. 99, no. 6, pp. e201800343, 2019. DOI: 10.1002/zamm.201800343.
  • A. Sur, P. Pal, S. Mondal, and M. Kanoria, “Finite element analysis in a fiber-reinforced cylinder due to memory-dependent heat transfer,” Acta Mech., vol. 230, no. 5, pp. 1607–1624, 2019. DOI: 10.1007/s00707-018-2357-2.
  • M. I. A. Othman and S. Mondal, “Memory-dependent derivative effect on 2D problem of generalized thermoelastic rotating medium with Lord-Shulman model,” Ind. J. Phys., 2019. DOI: 10.1007/s12648-019-01548-x.
  • M. I. A. Othman and S. Mondal, “Memory-dependent derivative effect on wave propagation of micropolar thermoelastic medium under pulsed laser heating with three theories,” Int. J. Numer. Methods Heat Fluid Flow, 2019. DOI: 10.1108/HFF-05-2019-0402.
  • S. Mondal, “Memory response in a magneto-thermoelastic rod with moving heat source based on Eringen’s nonlocal theory under dual-phase lag heat conduction,” Int. J. Comput. Methods, 2019. DOI: 10.1142/S0219876219500725.
  • A. Sur, S. Mondal, and M. Kanoria, “Influence of moving heat source on skin tissue in the context of two-temperature memory-dependent heat transport law,” J. Therm. Stresses, 2019. DOI: 10.1080/01495739.2019.1660288.
  • D. Y. Tzou, Macro-to Microscale Heat Transfer: The Lagging Behavior. United Kingdom: John Wiley & Sons, 2014.
  • M. A. Ezzat and A. S. El-Karamany, “Fractional order theory of a perfect conducting thermoelastic medium,” Can. J. Phys., vol. 89, no. 3, pp. 311–318, 2011. DOI: 10.1139/P11-022.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.