125
Views
9
CrossRef citations to date
0
Altmetric
Articles

Waves in generalized thermo-viscoelastic infinite continuum with cylindrical cavity due to three-phase-lag time-nonlocal heat transfer

, &
Pages 784-800 | Received 13 Dec 2019, Accepted 20 Mar 2020, Published online: 21 Apr 2020

References

  • M. Biot, “Variational principle in irreversible thermodynamics with application to viscoelasticity,” Phys. Rev, vol. 97, no. 6, pp. 1463–1469, 1955. DOI: 10.1103/PhysRev.97.1463.
  • V. Peshkov, “Second sound in helium II,” J. Phys., vol. 8, pp. 381–382, 1944.
  • H. Lord and Y. Shulman, “A generalized dynamical theory of thermoelasticity,” J. Mech. Phys. Solid, vol. 15, no. 5, pp. 299–309, 1967. DOI: 10.1016/0022-5096(67)90024-5.
  • A. E. Green and K. A. Lindsay, “Thermoelasticity,” J Elasticity, vol. 2, no. 1, pp. 1–7, 1972. DOI: 10.1007/BF00045689.
  • A. E. Green and P. M. Naghdi, “A re-examination of the basic postulates of thermomechanics,” Proc. R. Soc. A, vol. 432, no. 1885, pp. 171–194, 1991. DOI: 10.1098/rspa.1991.0012.
  • A. E. Green and P. M. Naghdi, “On undamped heat waves in an elastic solid,” J. Therm. Stresses, vol. 15, no. 2, pp. 253–264, 1992. DOI: 10.1080/01495739208946136.
  • A. E. Green and P. M. Naghdi, “Thermoelasticity without energy dissipation,” J Elasticity, vol. 31, no. 3, pp. 189–208, 1993. DOI: 10.1007/BF00044969.
  • D. Y. Tzou, “A unified filed approach for heat conduction from macro to macro-scales,” ASME J. Heat Transfer, vol. 117, no. 1, pp. 8–16, 1995. DOI: 10.1115/1.2822329.
  • S. K. R. Choudhuri, “On a thermoelastic three-phase-lag model,” J. Therm. Stresses, vol. 30, no. 3, pp. 231–238, 2007. DOI: 10.1080/01495730601130919.
  • J. Ignaczak and M. Ostoja-Starzewski, Thermoelasticity with Finite Wave Speeds. New York: Oxford University Press, Inc, 2010.
  • D. S. Chandrasekharaiah, “Thermoelasticity with second sound: A review,” Appl. Mech. Rev, vol. 39, no. 3, pp. 355–376, 1986. DOI: 10.1115/1.3143705.
  • D. S. Chandrasekharaiah, “Hyperbolic thermoelasticity: A review of recent literature,” Appl. Mech. Rev, vol. 51, no. 12, pp. 705–729, 1998. DOI: 10.1115/1.3098984.
  • M. E. Gurtin and W. O. Williams, “On the Clausius-Duhem inequality,” J. Appl. Math. Phys. (ZAMP), vol. 17, no. 5, pp. 626–633, 1966. DOI: 10.1007/BF01597243.
  • M. E. Gurtin and W. O. Williams, “An axiomatic foundation for continuum thermodynamics,” Arch. Rational Mech. Anal, vol. 26, no. 2, pp. 83–117, 1967. DOI: 10.1007/BF00285676.
  • P. J. Chen and M. E. Gurtin, “On a theory of heat conduction involving two temperatures,” J. Appl. Math. Phys. (ZAMP), vol. 19, no. 4, pp. 614–627, 1968. DOI: 10.1007/BF01594969.
  • P. J. Chen, M. E. Gurtin and W. O. Williams, “A note on non-simple heat conduction,” J. Appl. Math. Phys. (ZAMP), vol. 19, no. 6, pp. 969–970, 1968. DOI: 10.1007/BF01602278.
  • H. M. Youssef, “Theory of two-temperature generalized thermoelasticity,” IMA J. Appl. Math, vol. 71, no. 3, pp. 383–390, 2006. DOI: 10.1093/imamat/hxh101.
  • H. M. Youssef, “Theory of two-temperature thermoelasticity without energy dissipation,” J. Therm. Stresses, vol. 34, no. 2, pp. 138–146, 2011. DOI: 10.1080/01495739.2010.511941.
  • A. S. El-Karamany and M. A. Ezzat, “On the two-temperature Green-Naghdi thermoelasticity theories,” J. Therm. Stresses, vol. 34, no. 12, pp. 1207–1226, 2011. DOI: 10.1080/01495739.2011.608313.
  • S. Mukhopadhyay, R. Prasad and R. Kumar, “On the theory of two-temperature thermoelasticity with two phase-lags,” J. Therm. Stresses, vol. 34, no. 4, pp. 352–365, 2011. DOI: 10.1080/01495739.2010.550815.
  • R. Kumar, R. Prasad and S. Mukhopadhyay, “Variational and reciprocal principles in two-temperature generalized thermoelasticity,” J. Therm. Stresses, vol. 33, no. 3, pp. 161–171, 2010. DOI: 10.1080/01495730903454678.
  • A. Magaña and R. Quintanilla, “Uniqueness and growth of solutions in two-temperature generalized thermoelastic theories,” J. Math. Mech. Solid, vol. 14, no. 7, pp. 622–634, 2009. DOI: 10.1177/1081286507087653.
  • I. A. Abbas and H. M. Youssef, “Two-temperature generalized thermoelasticity under ramp-type heating by finite element method,” Meccanica, vol. 48, no. 2, pp. 331–339, 2013. DOI: 10.1007/s11012-012-9604-8.
  • I. A. Abbas, “A GN model based upon two-temperature generalized thermoelastic theory in an unbounded medium with a spherical cavity,” Appl. Math. Comput., vol. 245, pp. 108–115, 2014. DOI: 10.1016/j.amc.2014.07.059.
  • K. Lotfy, “Photothermal waves for two temperature with semiconducting medium under using a dual-phase-lag model and hydrostatic initial stress,” Waves Random Complex Media, vol. 27, no. 3, pp. 482–501, 2017. DOI: 10.1080/17455030.2016.1267416.
  • A. M. Freudenthal, “Effect of rheological behavior on thermal stresses,” J. Appl. Phys., vol. 25, no. 9, pp. 1110–1117, 1954. DOI: 10.1063/1.1721824.
  • R. S. Lakes, Viscoelastic Solids. New York: CRC Press, 1998,
  • B. Gross, Mathematical Structure of the Theories of Viscoelasticity. Paris: Hermann, 1953, pp. 30.
  • J. D. Ferry, Viscoelastic Properties of Polymers. New York: J. Wiley and Sons, 1970.
  • H. Scher and E. W. Montroll, “Anomalous transit-time dispersion in amorphous solid,” Phys. Rev. B, vol. 12, no. 6, pp. 2455–2477, 1975. DOI: 10.1103/PhysRevB.12.2455.
  • R. R. Nigmatullin, “On the theoretical explanation of the Universal Response,” Phys. Stat. Sol. (b), vol. 123, no. 2, pp. 739–745, 1984. DOI: 10.1002/pssb.2221230241.
  • R. R. Nigmatullin, “On the theory of relaxation with Remnant temperature,” Phys. Stat. Sol. (b), vol. 124, no. 1, pp. 389–393, 1984. DOI: 10.1002/pssb.2221240142.
  • M. Giona and H. E. Roman, “Fractional diffusion equation for transport phenomena in random media,” Physica A, vol. 185, no. 1-4, pp. 87–97, 1992. DOI: 10.1016/0378-4371(92)90441-R.
  • D. L. Koch and J. F. Brady, “Anomalous diffusion in heterogeneous porous media,” Phys. Fluids, vol. 31, no. 5, pp. 965–973, 1988. DOI: 10.1063/1.866716.
  • I. M. Sokolov, J. Mai and A. Blumen, “Paradoxal diffusion in chemical space for nearest-neighbor walks over polymer chains,” Phys. Rev. Lett., vol. 79, no. 5, pp. 857–860, 1997. DOI: 10.1103/PhysRevLett.79.857.
  • M. Caputo, “Linear model of dissipation whose Q is always frequency independent,” Geophys. J. Roy. Astr. Soc., vol. 13, no. 5, pp. 529–539, 1967. DOI: 10.1111/j.1365-246X.1967.tb02303.x.
  • M. Caputo and F. Mainardi, “A new dissipation model based on memory mechanism,” PAGEOPH, vol. 91, no. 1, pp. 134–147, 1971. DOI: 10.1007/BF00879562.
  • M. Caputo and F. Mainardi, “Linear model of dissipation in an elastic solids,” J. Rivista del Nuovo Cimento., vol. 1, no. 2, pp. 161–198, 1971. DOI: 10.1007/BF02820620.
  • Y. Z. Povstenko, “Fractional heat conduction equation and associated thermal stress,” J. Therm. Stresses, vol. 28, no. 1, pp. 83–102, 2004. DOI: 10.1080/014957390523741.
  • Y. Z. Povstenko, “Fractional Cattaneo-type equations and generalized thermoelasticity,” J. Therm. Stresses, vol. 34, no. 2, pp. 97–114, 2011. DOI: 10.1080/01495739.2010.511931.
  • Y. Z. Povstenko, Fractional Thermoelasticity, Switzerland: Springer International Publishing, 2015.
  • H. H. Sherief, A. El-Said and A. Abd El-Latief, “Fractional order theory of thermoelasticity,” Int. J. Solids Struct., vol. 47, no. 2, pp. 269–275, 2010. DOI: 10.1016/j.ijsolstr.2009.09.034.
  • H. M. Youssef, “Theory of fractional order generalized thermoelasticity,” ASME J. Heat Transfer, vol. 132, no. 6, 061301 (7 pages), Jun 2010. DOI: 10.1115/1.4000705.
  • M. A. Ezzat, “Theory of fractional order in generalized thermoelectric MHD,” Appl. Math. Model, vol. 35, no. 10, pp. 4965–4978, 2011. DOI: 10.1016/j.apm.2011.04.004.
  • M. A. Ezzat, “Magneto-thermoelasticity with thermoelectric properties and fractional derivative heat transfer,” Physica B, vol. 406, no. 1, pp. 30–35, 2011. DOI: 10.1016/j.physb.2010.10.005.
  • M. A. K. Molla, N. Mondal and S. H. Mallik, “Effects of fractional and two-temperature parameters on stress distributions for an unbounded generalized thermoelastic medium with spherical cavity,” Arab J. Basic Appl. Sci, vol. 26, no. 1, pp. 302–310, 2019. DOI: 10.1080/25765299.2019.1621511.
  • M. A. Ezzat, A. Elkaramany and M. Fayik, “Fractional order theory in thermoelastic solid with three-phase lag heat transfer,” Arch. Appl. Mech., vol. 82, no. 4, pp. 557–572, 2012. DOI: 10.1007/s00419-011-0572-6.
  • S. H. Mallik, M. A. K. Molla and N. Mondal, “Time-fractional two-temperature generalized thermoelasticity with energy dissipation for an Infinite solid with varying heat sources,” Bull. Cal. Math. Soc., vol. 110, no. 5, pp. 419–440, 2018.
  • N. Mondal, M. A. K. Molla and S. H. Mallik, “Fractional order two temperature generalized thermoelasticity of an infinite medium with cylindrical cavity under three phase lag heat transfer,” Ind. J. Theor. Phys., vol. 65, no. 3 & 4, pp. 187–204, 2017.
  • S. D. Warbhe, J. J. Tripathi, K. C. Deshmukh and J. Verma, “Fractional heat conduction in a thin hollow circular disk and associated thermal deflection,” J. Therm. Stresses, vol. 41, no. 2, pp. 262–270, 2018. DOI: 10.1080/01495739.2017.1393645.
  • H. G. Sun, Y. Zhang, D. Baleanu, W. Chen and Y. Q. Chen, “A new collection of real world applications of fractional calculus in science and engineering,” Commun. Nonlinear Sci. Numer. Simul., vol. 64, pp. 213–231, 2018. DOI: 10.1016/j.cnsns.2018.04.019.
  • R. Bellman, R. E. Kolaba and J. A. Lockette, Numerical Inversion of the Laplace Transform, New York: American Elsevier Publishing Company, 1966.
  • R. Quintanilla, “A well-posed problem for the three-dual-phase-lag heat conduction,” J. Therm. Stresses, vol. 32, no. 12, pp. 1270–1278, 2009. DOI: 10.1080/01495730903310599.
  • G. Jumarie, “Derivation and solutions of some fractional black scholes equations in coarse-grained space and time, application to Merton’s optimal portfolio,” Comput. Math. Appl, vol. 59, no. 3, pp. 1142–1164, 2010. DOI: 10.1016/j.camwa.2009.05.015.
  • R. Quintanilla and R. A. Racke, “A note on stability in three-phase-lag heat conduction,” Int. J. Heat Mass Transfer, vol. 51, no. 1-2, pp. 24–29, 2008. DOI: 10.1016/j.ijheatmasstransfer.2007.04.045.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.