161
Views
14
CrossRef citations to date
0
Altmetric
Articles

Effect of phase-lag on thermoelastic vibration of Timoshenko beam

ORCID Icon
Pages 1337-1354 | Received 06 Apr 2020, Accepted 11 Jun 2020, Published online: 17 Jul 2020

References

  • F. L. Guo et al., “Distinctive features of thermoelastic dissipation in microbeam resonators at nanoscale,” J. Therm. Stress., vol. 39, no. 3, pp. 360–369, 2016. DOI: 10.1080/01495739.2015.1125653.
  • M. Bostani and A. Karami Mohammadi, “Thermoelastic damping in microbeam resonators based on modified strain gradient elasticity and generalized thermoelasticity theories,” Acta Mech., vol. 229, no. 1, pp. 173–192, 2018. DOI: 10.1007/s00707-017-1950-0.
  • R. Kumar and R. Kumar, “Effects of phase lags on thermoelastic damping in micro-beam resonators,” Int. J. Str. Stab. Dyn., vol. 19, no. 9, pp. 1971005, 2019. DOI: 10.1142/S0219455419710056.
  • M. A. Biot, “Thermoelasticity and irreversible thermodynamics,” J. Appl. Phys., vol. 27, no. 3, pp. 240–253, 1956. DOI: 10.1063/1.1722351.
  • H. W. Lord and Y. Shulman, “A generalized dynamical theory of thermoelasticity,” J. Mech. Phys. Solids, vol. 15, no. 5, pp. 299–309, 1967. DOI: 10.1016/0022-5096(67)90024-5.
  • D. Tzou, “Damping and resonance characteristics of thermal waves,” Am. Soc. Mech. Eng., vol. 59, pp. 1–6, 1992. DOI: 10.1115/1.2894054.
  • A. E. Green and K. A. Lindsay, “Thermoelasticity,” J. Elasticity, vol. 2, no. 1, pp. 1–7, 1972. DOI: 10.1007/BF00045689.
  • A. E. Green and P. M. Naghdi, “A re-examination of the basic postulates of thermomechanics,” Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci., 432(1885), pp. 171–194, 1991. DOI: 10.1098/rspa.1991.0012.
  • A. E. Green and P. M. Naghdi, “On undamped heat waves in an elastic solid,” J. Therm. Stress., vol. 15, no. 2, pp. 253–264, 1992. DOI: 10.1080/01495739208946136.
  • A. E. Green and P. M. Naghdi, “Thermoelasticity without energy dissipation,” J. Elasticity, vol. 31, no. 3, pp. 189–208, 1993. DOI: 10.1007/BF00044969.
  • S. K. Roy Choudhuri, “On a thermoelastic three-phase-lag model,” J. Therm. Stress., vol. 30, no. 3, pp. 231–238, 2007. DOI: 10.1080/01495730601130919.
  • C. Zener, “Internal friction in solids. I. Theory of internal friction in reeds,” Phys. Rev., vol. 52, no. 3, pp. 230–235, 1937. DOI: 10.1103/PhysRev.52.230.
  • C. Zener, “Internal friction in solids II. General theory of thermoelastic internal friction,” Phys. Rev., vol. 53, no. 1, pp. 90–99, 1938. DOI: 10.1103/PhysRev.53.90.
  • R. Lifshitz and M. Roukes, “Thermoelastic damping in micro- and nanomechanical systems,” Phys. Rev. B, vol. 61, no. 8, pp. 5600–5609, 2000. DOI: 10.1103/PhysRevB.61.5600.
  • K. Y. Yasumura et al., “Quality factors in micron- and submicron-thick cantilevers,” J. Microelectromech. Syst., vol. 9, no. 1, pp. 117–125, 2000. DOI: 10.110/84.825786.
  • Z. F. Khisaeva and M. Ostoja-Starzewski, “Thermoelastic damping in nanomechanical resonators with finite wave speeds,” J. Therm. Stress., vol. 29, no. 3, pp. 201–216, 2006. DOI: 10.1080/01495730500257490.
  • F. L. Guo et al., “Analysis of thermoelastic dissipation in circular micro-plate resonators using the generalized thermoelasticity theory of dual-phase-lagging model,” J. Sound Vibrat., vol. 333, no. 11, pp. 2465–2474, 2014. DOI: 10.1016/j.jsv.2014.01.003.
  • J. N. Sharma and D. Grover, “Thermoelastic vibration analysis of Mems/Nems plate resonators with voids,” Acta Mech., vol. 223, no. 1, pp. 167–187, 2012. DOI: 10.1007/s00707-011-0557-0.
  • I. A. Abbas, “The effect of relaxation times on thermoelastic damping in a nanobeam resonator,” J. Mol. Eng. Mater., vol. 4, no. 2, pp. 1650001, 2016. DOI: 10.1142/S2251237316500015.
  • X. Zhao, E. C. Yang, and Y. H. Li, “Analytical solutions for the coupled thermoelastic vibrations of Timoshenko beams by means of Green’s functions,” Int. J. Mech. Sci., vol. 100, pp. 50–67, 2015. DOI: 10.1016/j.ijmecsci.2015.05.022.
  • X. Zhao et al., “Analytical solutions for the coupled thermoelastic vibrations of the cracked Euler-Bernoulli beams by means of Green’s functions,” Int. J. Mech. Sci., vol. 128–129, pp. 37–53, 2017. DOI: 10.1016/j.ijmecsci.2017.04.009.
  • A. V. Krysko et al., “Stability of curvilinear Euler-Bernoulli beams in temperature fields,” Int. J. Nonlinear Mech., vol. 94, pp. 207–215, 2017. DOI: 10.1016/j.ijnonlinmec.2016.12.004.
  • R. D. Mindlin and H. F. Tiersten, “Effects of couple-stresses in linear elasticity,” Arch. Rational Mech. Anal, vol. 11, no. 1, pp. 415–448, 1962. DOI: 10.1007/BF00253946.
  • R. A. Toupin, “Elastic materials with couple-stresses,” Arch. Rational Mech. Anal., vol. 11, no. 1, pp. 385–414, 1962. DOI: 10.1007/BF00253945.
  • A. Tabiei and J. Sun, “Statistical aspects of strength size effect of laminated composite materials,” Compos. Struct., vol. 46, no. 3, pp. 209–216, 1999. DOI: 10.1016/S0263-8223(99)00056-2.
  • F. Yang et al., “Couple stress based strain gradient theory for elasticity,” Int. J. Solids Struct., vol. 39, no. 10, pp. 2731–2743, 2002. DOI: 10.1016/S0020-7683(02)00152-X.
  • H. M. Ma, X. L. Gao, and J. N. Reddy, “A microstructure-dependent Timoshenko beam model based on a modified couple stress theory,” J. Mech. Phys. Solids, vol. 56, no. 12, pp. 3379–3391, 2008. DOI: 10.1016/j.jmps.2008.09.007.
  • H. M. Ma, X. L. Gao, and J. N. Reddy, “A non-classical Mindlin plate model based on a modified couple stress theory,” Acta Mech., vol. 220, no. 1–4, pp. 217–235, 2011. DOI: 10.1007/s00707-011-0480-4.
  • J. N. Reddy, “Microstructure-dependent couple stress theories of functionally graded beams,” J. Mech. Phys. Solids, vol. 59, no. 11, pp. 2382–2399, 2011. DOI: 10.1016/j.jmps.2011.06.008.
  • L. L. Ke et al., “Free vibration of size-dependent Mindlin microplates based on the modified couple stress theory,” J. Sound Vibrat., vol. 331, no. 1, pp. 94–106, 2012. DOI: 10.1016/j.jsv.2011.08.020.
  • E. Kazemnia Kakhki, S. M. Hosseini, and M. Tahani, “An analytical solution for thermoelastic damping in a micro-beam based on generalized theory of thermoelasticity and modified couple stress theory,” Appl. Math. Model., vol. 40, no. 4, pp. 3164–3174, 2016. DOI: 10.1016/j.apm.2015.10.019.
  • J. Awrejcewicz et al., “Stability of the size-dependent and functionally graded curvilinear Timoshenko beams,” J. Comput. Nonlinear Dyn., vol. 12, no. 4, pp. 041018, 2017. DOI: 10.1115/1.4035668.
  • J. Awrejcewicz et al., “Chaotic dynamics of size dependent Timoshenko beams with functionally graded properties along their thickness,” Mech. Syst. Signal Process., vol. 93, pp. 415–121, 2017. 2017.01.047. DOI: 10.1016/j.ymss.
  • J. Awrejcewicz et al., “Nonlinear dynamics of contact interaction of a size-dependent plate supported by a size-dependent beam,” Chaos, vol. 28, no. 5, pp. 053102, 2018. DOI: 10.1063/1.5022854.
  • J. A. López Molina et al., “Thermal modeling for pulsed radiofrequency ablation: Analytical study based on hyperbolic heat conduction,” Med. Phys., vol. 36, no. 4, pp. 1112–1119, 2009. DOI: 10.1118/1.3085824.
  • E. Taati, M. Molaei Najafabadi, and H. Basirat Tabrizi, “Size-dependent generalized thermoelasticity model for Timoshenko microbeams,” Acta Mech., vol. 225, no. 7, pp. 1823–1842, 2014. DOI: 10.1007/s00707-013-1027-7.
  • J. Awrejcewicz et al., “Thermoelastic vibrations of a Timoshenko microbeam based on the modified couple stress theory,” Nonlinear Dyn., vol. 99, no. 2, pp. 919–943, 2020. DOI: 10.1007/s11071-019-04976-w.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.