116
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Radial vibrations of functionally graded spheres due to thermal load

&
Pages 1531-1546 | Received 21 Mar 2020, Accepted 03 Aug 2020, Published online: 26 Aug 2020

References

  • W. B. Bickford and W. E. Warren, “The propagation and reflection of elastic waves in anisotropic hollow spheres and cylinders,” Proc. Third Southeast. Conf. Theo. Appl. Mech., Columbia, S. Carolina, USA., Vol. 1, pp. 433–445, 1966.
  • A. K. Ghosh and M. K. Agrawal, “Radial vibrations of spheres,” J. Sound Vib., vol. 171, no. 3, pp. 315–322, 1994. DOI: 10.1006/jsvi.1994.1123.
  • J. P. Sheehan and L. Debnath, “Transient vibrations of an isotropic elastic sphere,” PAGEOPH, vol. 99, no. 1, pp. 37–48, 1972. DOI: 10.1007/BF00875261.
  • C. J. Tranter, “The application of the Laplace transformation to a problem on elastic vibrations,” Philos. Mag., vol. 33, no. 223, pp. 614–622, 1942. DOI: 10.1080/14786444208520820.
  • I. Keles and N. Tutuncu, “Exact analysis of axisymmetric dynamic response of functionally graded cylinders (or disks) and spheres,” J. Appl. Mech., vol. 78, pp. 061014-1–061014-7, 2011. DOI: 10.1115/1.4003914.
  • L. Olaosebikan, “Vibration analysis of elastic spherical shells,” Int. J. Eng. Sci., vol. 24, no. 10, pp. 1637–1654, 1986. DOI: 10.1016/0020-7225(86)90138-2.
  • X. Wang, C. Wang, G. Lu, and B. M. Zhou, “Thermal stress-focusing in a transversely isotropic sphere and an isotropic sphere,” J. Therm. Stresses, vol. 25, no. 1, pp. 31–44, 2002. DOI: 10.1080/014957302753305853.
  • A. Atsumi and S. Itou, “Stresses in a transversely isotropic slab having a spherical cavity,” ASME, J. Appl. Mech., vol. 40, no. 3, pp. 752–758, 1973. DOI: 10.1115/1.3423085.
  • H. J. Ding, H. M. Wang, and W. Q. Chen, “Dynamic responses of a functionally graded pyroelectric hollow sphere for spherically symmetric problems,” Int. J. Mech. Sci., vol. 45, no. 6/7, pp. 1029–1051, 2003. DOI: 10.1016/j.ijmecsci.2003.09.005.
  • H. M. Wang, H. J. Ding, and Y. M. Chen, “Transient responses of a multilayered spherically isotropic piezoelectric hollow sphere,” Arch Appl Mech., vol. 74, no. 9, pp. 581–599, 2005. DOI: 10.1007/s00419-005-0374-9.
  • M. Kanoria and M. K. Ghosh, “Study of dynamic response in a functionally graded spherically isotropic hollow sphere with temperature dependent elastic parameters,” J. Therm. Stresses, vol. 33, no. 5, pp. 459–484, 2010. DOI: 10.1080/01495731003738440.
  • F. Alavi, D. Karimi, and A. Bagri, “An investigation on thermoelastic behavior of functionally graded thick spherical vessels under combined thermal and mechanical loads,” J. Achiev. Mater. Manuf. Eng., vol. 31, pp. 422–428, 2008.
  • A. Bagri and M. R. Eslami, “Analysis of thermoelastic waves in functionally graded hollow spheres based on the Green-Lindsay theory,” J. Therm. Stresses, vol. 30, no. 12, pp. 1175–1193, 2007. DOI: 10.1080/01495730701519508.
  • H. H. Sherief and E. M. Hussein, “Fundamental solution of thermoelasticity with two relaxation times for an infinite spherically symmetric space,” Z. Angew. Math. Phys., vol. 68, no. 2, pp. 50-1–14, 2017. DOI: 10.1007/s00033-017-0794-8.
  • H. H. Sherief and W. E. Raslan, “A 2D problem of thermoelasticity without energy dissipation for a sphere subjected to axisymmetric temperature distribution,” J. Therm. Stresses, vol. 40, no. 11, pp. 1461–1470, 2017. DOI: 10.1080/01495739.2017.1329642.
  • M. A. Ezzat and A. A. El-Bary, “Thermoelectric spherical shell with fractional order heat transfer,” Microsyst. Technol., vol. 24, no. 2, pp. 891–899, 2018. DOI: 10.1007/s00542-017-3400-2.
  • Y. Bayat, M. Ghannad, and H. Torabi, “Analytical and numerical analysis for the FGM thick sphere under combined pressure and temperature loading,” Arch. Appl. Mech., vol. 82, no. 2, pp. 229–242, 2012. DOI: 10.1007/s00419-011-0552-x.
  • M. Jabbari, S. M. Mousavi, and M. A. Kiani, “Functionally graded hollow sphere with piezoelectric internal and external layers under asymmetric transient thermomechanical loads,” J. Pressure Vessel Technol., vol. 139, pp. 051207-1–20, 2017. DOI: 10.1115/1.4037444.
  • G. Mittal and V. S. Kulkarni, “Two temperature fractional order thermoelasticity theory in a spherical domain,” J. Therm. Stresses, vol. 42, no. 9, pp. 1136–1152, 2019. DOI: 10.1080/01495739.2019.1615854.
  • L. H. You, J. J. Zhang, and X. Y. You, “Elastic analysis of internally pressurized thick-walled spherical pressure vessels of functionally graded materials,” Int. J. Pressure Vessels Piping, vol. 82, no. 5, pp. 347–354, 2005. DOI: 10.1016/j.ijpvp.2004.11.001.
  • G. J. Nie, Z. Zhong, and R. C. Batra, “Material tailoring for functionally graded hollow cylinders and spheres,” Compos. Sci. Technol., vol. 71, no. 5, pp. 666–673, 2011. DOI: 10.1016/j.compscitech.2011.01.009.
  • Y. Anani and G. H. Rahimi, “Stress analysis of thick pressure vessel composed of functionally graded incompressible hyperelastic materials,” Int. J. Mech. Sci., vol. 104, pp. 1–7, 2015. DOI: 10.1016/j.ijmecsci.2015.09.012.
  • M. Norouzi, A. A. Delouei, and M. Seilsepour, “A general exact solution for heat conduction in multilayer spherical composite laminates,” Compos. Struct., vol. 106, pp. 288–295, 2013. DOI: 10.1016/j.compstruct.2013.06.005.
  • M. Ostoja-Starzewski, “Micrmechanics as a basis of random elastic continuum approximations,” Probab. Eng. Mech., vol. 8, no. 2, pp. 107–114, 1993. DOI: 10.1016/0266-8920(93)90004-F.
  • A. Saharan, M. Ostoja-Starzewski, and S. Koric, “Fractal geometric characterization of functionally graded materials,” J. Nanomech. Micromech., vol. 3, no. 4, pp. 04013001–04013013, 2013. DOI: 10.1061/(ASCE)NM.2153-5477.0000058.
  • R. C. Batra and G. L. Iaccarino, “Exact solutions for radial deformations of a functionally graded isotropic and incompressible second-order elastic cylinder,” Int. J. Nonlinear Mech., vol. 43, no. 5, pp. 383–398, 2008. DOI: 10.1016/j.ijnonlinmec.2008.01.006.
  • L. Capolungo, Atomistic and Continuum Modeling of Nanocrystalline Materials: Deformation Mechanisms and Scale Transition, Springer Series in Materials Science (No. 112). Boston, MA, USA: Springer Science & Business Media, 2010.
  • M. Z. Nejad, M. Jabbari, and M. Ghannad, “Elastic analysis of FGM Rotating thick truncated conical shells with axially-varying properties under non-uniform pressure loading,” Compos. Struct, vol. 122, pp. 561–569, 2015. DOI: 10.1016/j.compstruct.2014.12.028.
  • I. A. Abbas and A. M. Zenkour, “LS model on electro-magneto-thermoelastic response of an infinite functionally graded cylinder,” Compos. Struct., vol. 96, pp. 89–96, 2013. DOI: 10.1016/j.compstruct.2012.08.046.
  • N. Noda and Z. H. Jin, “Thermal stress intensity factors for a crack in a strip of a functionally gradient material,” Int. J. Solids Struct., vol. 30, no. 8, pp. 1039–1056, 1993. DOI: 10.1016/0020-7683(93)90002-O.
  • S. Sharma and S. Yadav, “Thermo elastic-plastic analysis of rotating functionally graded stainless steel composite cylinder under internal and external pressure using finite difference method,” Adv. Mater. Sci. Eng., vol. 2013, pp. 1–11, 2013. DOI: 10.1155/2013/810508.
  • R. S. Dhaliwal and A. Singh, Dynamic Coupled Thermoelasticity.New Delhi: Hindustan Publ. Corp., 1980.
  • H. W. Lord and Y. Shulman, “A generalized dynamic theory of thermoelasticity,” J. Mech. Phys. Solids, vol. 15, no. 5, pp. 299–309, 1967. DOI: 10.1016/0022-5096(67)90024-5.
  • C. J. Tranter, Integral Transforms in Mathematical Physics (Methuen’s Monograph on Physical Subjects), 3rd ed. New York, USA: Wiley, 1966.
  • P. K. Sharma and K. C. Mishra, “Analysis of thermoelastic response in functionally graded hollow sphere without load,” J. Therm. Stresses, vol. 40, no. 2, pp. 185–197, 2017. DOI: 10.1080/01495739.2016.1231024.
  • G. N. Watson, A Treatise on the Theory of Bessel Functions. London: Cambridge Univ. Press, 1962.
  • N. N. Lebedev, Special Functions and Their Applications. Englewood Cliffs, NJ, USA: Prentice-Hall Inc., 1965.
  • D. S. Chandrasekharaiah, “Thermoelasticity with second sound - a review,” Appl. Mech. Rev., vol. 39, no. 3, pp. 355–376, 1986. DOI: 10.1115/1.3143705.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.