156
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Thermoelastic problem of two arbitrarily-shaped inclusions

, , & ORCID Icon
Pages 1601-1612 | Received 29 May 2020, Accepted 17 Aug 2020, Published online: 23 Sep 2020

References

  • C. K. Chao, F. M. Chen, and T. H. Lin, “Thermal stresses induced by a remote uniform heat flow interacting with two circular inclusions,” J. Therm. Stresses, vol. 40, no. 5, pp. 564–582, 2017. DOI: 10.1080/01495739.2016.1228437.
  • Z. Abdulaliyev, et al., “Thermal stress concentration in plates from different materials,” J. Aircraft, vol. 49, no. 3, pp. 941–946, 2012. DOI: 10.2514/1.C031661.
  • M. Jafari and M. Jafari, “Effect of hole geometry on the thermal stress analysis of perforated composite plate under uniform heat flux,” J. Compos. Mater., vol. 53, no. 8, pp. 1079–1095, 2019. DOI: 10.1177/0021998318795279.
  • A. L. Florence and J. N. Goodier, “Thermal stresses due to disturbance of uniform heat flow by an insulated ovaloid hole,” J. Appl. Mech., vol. 27, no. 4, pp. 635–639, 1960. DOI: 10.1115/1.3644074.
  • A. Sekiguchi, et al., “Void formation by thermal stress concentration at twin interfaces in Cu thin films,” Appl. Phys. Lett., vol. 79, no. 9, pp. 1264–1266, 2001. DOI: 10.1063/1.1399021.
  • C. H. Gao, et al., “Stress analysis of thermal fatigue fracture of brake disks based on thermomechanical coupling,” J. Tribol., vol. 129, no. 3, pp. 536–543, 2007. DOI: 10.1115/1.2736437.
  • C. Y. Zheng, X. B. Li, and C. W. Mi, “Reducing stress concentrations in unidirectionally tensioned thick-walled spheres through embedding a functionally graded reinforcement,” Int. J. Mech. Sci., vol. 152, pp. 257–267, 2019. DOI: 10.1016/j.ijmecsci.2018.12.055.
  • Q. Q. Yang and C. F. Gao, “Non-axisymmetric thermal stress around a circular hole in a functionally graded infinite plate,” J. Therm. Stresses, vol. 33, no. 4, pp. 318–334, 2010. DOI: 10.1080/01495731003656923.
  • X. Wang, “Uniform fields inside two non-elliptical inclusions,” Math. Mech. Solids, vol. 17, no. 7, pp. 736–761, 2012. DOI: 10.1177/1081286511429888.
  • M. Dai, C. F. Gao, and C. Q. Ru, “Uniform stress fields inside multiple inclusions in an elastic infinite plane under plane deformation,Proc. Math. Phys. Eng. Sci, vol. 471, no. 2177, pp. 20140933, 2015. DOI: 10.1098/rspa.2014.0933.
  • M. Dai and C. F. Gao, “Non-circular nano-inclusions with interface effects that achieve uniform internal strain fields in an elastic plane under anti-plane shear,” Arch. Appl. Mech., vol. 86, no. 7, pp. 1295–1309, 2016. DOI: 10.1007/s00419-015-1098-0.
  • N. I. Muskhelishvili, Some Basic Problems of the Mathematical Theory of Elasticity, Groningen: Noordhoff, 1957.
  • G. N. Savin, Stress Concentration around Holes, New York: Pergamon Press, 1961.
  • J. C. Luo and C. F. Gao, “Faber series method for plane problems of an arbitrarily shaped inclusion,” Acta Mech., vol. 208, no. 3-4, pp. 133–145, 2009. DOI: 10.1007/s00707-008-0138-z.
  • J. Y. Tang and H. B. Yang, “An alternative numerical scheme for calculating the thermal stresses around an inclusion of arbitrary shape in an elastic plane under uniform remote in-plane heat flux,” Acta Mech., vol. 230, no. 7, pp. 2399–2412, 2019. DOI: 10.1007/s00707-019-02388-w.
  • C. F. Gao and W. X. Fan, “Exact solutions for the plane problem in piezoelectric materials with an elliptic or a crack,” Int. J. Solids Struct., vol. 36, no. 17, pp. 2527–2540, 1999. DOI: 10.1016/S0020-7683(98)00120-6.
  • K. Song and P. Schiavone, “Thermal conduction around a circular nanoinhomogeneity,” Int. J. Heat Mass Tran., vol. 150, pp. 119297, 2020. DOI: 10.1016/j.ijheatmasstransfer.2019.119297.
  • K. Song and P. Schiavone, “Thermally neutral nano-hole and its effect on the elastic field,” Eur. J. Mech. A-Solid, vol. 81, pp. 103973, 2020. DOI: 10.1016/j.euromechsol.2020.103973.
  • S. Wang, et al., “Stress field around an arbitrarily shaped nanosized hole with surface tension,” Acta Mech., vol. 225, no. 12, pp. 3453–3462, 2014. DOI: 10.1007/s00707-014-1148-7.
  • S. Wang, et al., “Surface tension-induced interfacial stresses around a nanoscale inclusion of arbitrary shape,” Z. Angew. Math. Phys., vol. 68, no. 6, pp. 127, 2017. DOI: 10.1007/s00033-017-0876-7.
  • M. Dai, “Design of periodic harmonic holes with surface tension in plane deformations,” Math. Mech. Solids, vol. 24, no. 7, pp. 2060–2065, 2019. DOI: 10.1177/1081286518811880.
  • X. Wang and P. Schiavone, “Interaction of a screw dislocation with a nano-sized, arbitrarily shaped inhomogeneity with interface stresses under anti-plane deformations,Proc. Math. Phys. Eng. Sci, vol. 470, no. 2170, pp. 20140313, 2014. DOI: 10.1098/rspa.2014.0313.
  • S. Wang, Z. T. Chen, and C. F. Gao, “Analytic solution for a circular nano-inhomogeneity in a finite matrix,” Nano Mater. Sci., vol. 1, no. 2, pp. 116–120, 2019. DOI: 10.1016/j.nanoms.2019.02.002.
  • M. Dai and P. Schiavone, “Edge dislocation interacting with a Steigmann-Ogden interface incorporating residual tension,” Int. J. Eng. Sci., vol. 139, pp. 62–69, 2019. DOI: 10.1016/j.ijengsci.2019.01.009.
  • M. A. Grekov and T. S. Sergeeva, “Interaction of edge dislocation array with bimaterial interface incorporating interface elasticity,” Int. J. Eng. Sci., vol. 149, pp. 62–69, 2020. DOI: 10.1016/j.ijengsci.2020.103233.
  • J. Wu, C. Q. Ru, and L. Zhang, “An elliptical liquid inclusion in an infinite elastic plane,” Proc. R. Soc. A., vol. 474, no. 2215, pp. 20170813, 2018. DOI: 10.1098/rspa.2017.0813.
  • M. Dai, M. Li, and P. Schiavone, “Plane deformations of an inhomogeneity-matrix system incorporating a compressible liquid inhomogeneity and complete Gurtin-Murdoch interface model,” J. Appl. Mech., vol. 85, no. 12, pp. 121010, 2018., DOI: 10.1115/1.4041469.
  • M. Dai, J. Hua, and P. Schiavone, “Compressible liquid/gas inclusion with high initial pressure in plane deformation: Modified boundary conditions and related analytical solutions,” Eur. J. Mech. A-Solid, vol. 82, no. 10400, 2020. DOI: 10.1016/j.euromechsol.2020.104000.
  • Y. Ma, A. Lu, and H. Cai, “An analytical method for determining the non-enclosed elastoplastic interface of a circular hole,” Math. Mech. Solids, vol. 25, no. 5, pp. 1199–1213, 2020. DOI: 10.1177/1081286520909489.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.