211
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Thermo-mechanical modeling and transient analysis of frictional braking of elevator safety gear

, , &
Pages 1467-1486 | Received 16 Sep 2019, Accepted 02 Sep 2020, Published online: 12 Oct 2020

References

  • BSI EN 81-20 2014. “Safety rules for the construction and installation of lifts—Lifts for the transport of persons and goods—Part 20: Passenger and goods passenger lifts.”
  • S. C. Lim, M. F. Ashby and J. F. Brunton, “The effect of sliding conditions on the dry friction of metals,” Acta Metall, vol. 37, no. 3, pp. 767–772, 1989. DOI: 10.1016/0001-6160(89)90003-5.
  • BSI EN 13463-5 2003. “Non-electrical Equipment for Use in Potentially Explosive Atmospheres—Part 5: Protection by Constructional Safety ‘c.’”
  • D. L. Goldsby and T. E. Tullis, “Flash heating leads to low frictional strength of crustal rocks at earthquake slip rates,” Science, vol. 334, no. 6053, pp. 216–218, 2011. DOI: 10.1126/science.1207902.
  • M. Hideka et al., “Development of ultra-high-speed elevator that achieved the world’s fastest elevator with a speed of 1,200 m/min,” Hitachi Rev., vol. 66, no. 3, pp. 219–230, 2017.
  • A. Yevtushenko and M. Kuciej, “Temperature and thermal stresses in a pad/disc during braking,” Appl. Therm. Eng., vol. 30, no. 4, pp. 354–359, 2010. DOI: 10.1016/j.applthermaleng.2009.09.015.
  • A. Belhocine and M. Bouchetara, “Thermal analysis of a solid brake disc,” Appl. Therm. Eng., vol. 32, pp. 59–67, 2012. DOI: 10.1016/j.applthermaleng.2011.08.029.
  • A. Belhocine and M. Bouchetara, “Thermomechanical modelling of dry contacts in automotive disc brake,” Int. J. Therm. Sci., vol. 60, pp. 161–170, 2012. DOI: 10.1016/j.ijthermalsci.2012.05.006.
  • M.-R. Ishak, A.-R. A. Bakar, A. Belhocine, J.-M. Taib and W.-Z. W. Omar, “Brake torque analysis of fully mechanical parking brake system,” Theor. Expe. Approach Measur., vol. 94, pp. 487–497, 2016. DOI: 10.1016/j.measurement.2016.08.026.
  • A. Belhocine, “FE prediction of thermal performance and stresses in an automotive disc brake system,” Int. J. Adv. Manuf. Technol., vol. 89, no. 9–12, pp. 3563–3578, 2017. DOI: 10.1007/s00170-016-9357-y.
  • N. G. AliBelhocine, “Effects of Young’s modulus on disc brake squeal using finite element analysis,” Int. J. Acoust. Vib., vol. 21, no. 3, pp. 292–300, 2016.
  • A. Belhocine and W. Z. W. Omar, “Three-dimensional finite element modeling and analysis of the mechanical behavior of dry contact slipping between the disc and the brake pads,” Int. J. Adv. Manuf. Technol., vol. 88, no. 1–4, pp. 1035–1051, 2017. DOI: 10.1007/s00170-016-8822-y.
  • A. Belhocine and W. Z. W. Omar, “CFD analysis of the brake disc and the wheel house through air flow: predictions of Surface heat transfer coefficients (STHC) during braking operation,” J. Mech. Sci. Technol., vol. 32, no. 1, pp. 481–490, 2018. DOI: 10.1007/s12206-017-1249-z.
  • A. Belhocine and O. I. Abdullah, “A thermomechanical model for the analysis of disc brake using the finite element method in frictional contact,” J. Therm. Stress., vol. 43, no. 3, pp. 305–320, 2020. DOI: 10.1080/01495739.2019.1683482.
  • B. Ghadimi, F. Kowsary and M. Khorami, “Thermal analysis of locomotive wheel-mounted brake disc,” Appl. Therm. Eng., vol. 51, no. 1–2, pp. 948–952, 2013. DOI: 10.1016/j.applthermaleng.2012.10.051.
  • J.-G. Bauzin and N. Laraqi, “Three-dimensional analytical calculation of the temperature in a brake disc of a high-speed train,” Appl. Therm. Eng., vol. 154, pp. 668–675, 2019. DOI: 10.1016/j.applthermaleng.2019.03.112.
  • C. Zhang et al., “Simulated three-dimensional transient temperature field during aircraft braking for C/SiC composite brake disc,” Mater. Des., vol. 32, no. 5, pp. 2590–2595, 2011. DOI: 10.1016/j.matdes.2011.01.041.
  • H. Xu et al., “Influence of matrix carbon texture on the temperature field of carbon/carbon composites during braking,” Tribol. Int., vol. 44, no. 1, pp. 18–24, 2011. DOI: 10.1016/j.triboint.2010.09.004.
  • G. Dimitrios, C. Iraklis and S. Nickolas, “Dynamic and structural integrity analysis of a complete elevator system through a mixed computational-experimental finite element methodology,” Eng. Struct., vol. 160, pp. 473–487, 2018.
  • P. Lonkwic, P. Różyło and H. Dębski, “Numerical and experimental analysis of the progressive gear body with the use of finite-element method,” EiN, vol. 17, no. 4, pp. 544–550, 2015. DOI: 10.17531/ein.2015.4.9.
  • L. Paweł and R. Patryk, “Theoretical and experimental analysis of loading impact from the progressive gear on the lift braking distance with the use of the free fall method,” Adv. Sci. Technol., vol. 10, no. 30, pp. 103–109, 2016.
  • J. Yao et al., “Numerical simulation and experimental study of temperature increase in the safety-clamp action of explosion-proof elevator,” Mechatronics, vol. 2011, no. 12, pp. 13–17, 2010.
  • ABAQUS, User’s Manual and Theory Manual. Providence, RI, USA: Hibbit, Karlsson & Sorenson, V2016, 2016.
  • K. Seid, C. H. Lance and G. T. Brian, “Explicit coupled thermo-mechanical finite element model of steel solidification,” Int. J. Numer. Meth. Eng., vol. 78, pp. 1–31, 2009.
  • A. Wu, X. Shi and A. A. Polycarpou, “An elastic-plastic spherical contact model under combined normal and tangential loading,” ASME J. Appl. Mech., vol. 79, no. 5, 051001-1, 2012. DOI: 10.1115/1.4006457.
  • A. Wu and X. Shi, “Numerical investigation of adhesive wear and static friction based on the ductile fracture of junction,” ASME J. Appl. Mech., vol. 80, no. 4, 041032-1, 2013. DOI: 10.1115/1.4023109.
  • X. Shi, A. Wu, C. Jin and S. Qu, “Thermomechanical modeling and transient analysis of sliding contacts between an elastic-plastic asperity and a rigid isothermal flat,” Tribol. Int., vol. 81, pp. 53–60, 2015. DOI: 10.1016/j.triboint.2014.08.004.
  • Metal Handbook, “Properties and selection: nonferrous alloys and special-purpose materials,” in The Materials Information Society, vol. 2, 10th ed. Ohio, USA: ASM International, 1990.
  • X. Tan, P. P. Conway and F. Sarvar, “Thermo-mechanical properties and regression models of alloys: AISI 305, CK 60, CuBe2 and Laiton MS 63,” J. Mater. Process. Technol., vol. 168, no. 1, pp. 152–163, 2005. DOI: 10.1016/j.jmatprotec.2004.11.011.
  • S. Hu, L. Du and M. Huang, “Testing thermal contact conductance under plastic deformation,” J. Central South Univer. (Sci. Technol.), vol. 37, no. 1, pp. 91–95, 2006.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.