126
Views
4
CrossRef citations to date
0
Altmetric
Articles

A novel theory of generalized thermoelasticity based on thermomass motion and two-temperature heat conduction

ORCID Icon
Pages 133-148 | Received 03 Jun 2020, Accepted 24 Sep 2020, Published online: 29 Oct 2020

References

  • B.-D. Nie, B.-Y. Cao, Z.-Y. Guo and Y.-C. Hua, “Thermomass theory in the framework of GENERIC,” Entropy, vol. 22, no. 2, pp. 227, 2020. DOI: 10.3390/e22020227.
  • C. C. Ackerman, B. Bertman, H. A. Fairbank and R. A. Guyer, “Second sound in solid helium,” Phys. Rev. Lett., vol. 16, no. 18, pp. 789–791, 1966. DOI: 10.1103/PhysRevLett.16.789.
  • T. F. McNelly, et al., “Heat pulses in NaF: onset of second sound,” Phys. Rev. Lett., vol. 24, no. 3, pp. 100–102, 1970. DOI: 10.1103/PhysRevLett.24.100.
  • M. Highland, B. Gundrum, Y. K. Koh, et al., “Ballistic-phonon heat conduction at the nanoscale as revealed by time-resolved x-ray diffraction and time-domain thermoreflectance,” Phys. Rev. B, vol. 76, no. 7, pp. 075337, 2007. DOI: 10.1103/PhysRevB.76.075337.
  • D. Joseph and L. Preziosi, “Heat waves: Addendum,” Rev. Mod. Phys., vol. 62, no. 2, pp. 375–391, 1990. DOI: 10.1103/RevModPhys.62.375.
  • N. Mingo and D. Broido, “Length dependence of carbon nanotube thermal conductivity and the “problem of long waves",” Nano Lett., vol. 5, no. 7, pp. 1221–1225, 2005. DOI: 10.1021/nl050714d.
  • D.-S. Tang, Y.-C. Hua and B.-Y. Cao, “Thermal wave propagation through nanofilms in ballistic-diffusive regime by Monte Carlo simulations,” Int. J. Therm. Sci., vol. 109, pp. 81–89, 2016. DOI: 10.1016/j.ijthermalsci.2016.05.030.
  • B.-S. Hong, C.-Y. Chou and P.-J. Su, et al., editors. “Realization of non-Fourier phenomena in heat transfer with 2D transfer function,” Proceedings of SICE Annual Conference 2010, 2010. IEEE.
  • B.-S. Hong and C.-Y. Chou, “Realization of thermal inertia in frequency domain,” Entropy, vol. 16, no. 2, pp. 1101–1121, 2014. DOI: 10.3390/e16021101.
  • C. Cattaneo, “Sulla conduzione del calore,” Atti Sem. Mat. Fis. Univ. Modena, vol. 3, pp. 83–101, 1948.
  • P. Vernotte, “Paradoxes in the continuous theory of the heat equation,” CR Acad. Sci., vol. 246, no. 3, pp. 154–153, 1958.
  • B.-Y. Cao and Z.-Y. Guo, “Equation of motion of a phonon gas and non-Fourier heat conduction,” J. Appl. Phys., vol. 102, no. 5, pp. 053503, 2007. DOI: 10.1063/1.2775215.
  • Z.-Y. Guo and Q.-W. Hou, “Thermal wave based on the thermomass model,” J. Heat Transfer, vol. 132, no. 7, pp. 072403, 2010.
  • Y. Dong, B.-Y. Cao and Z.-Y. Guo, “Generalized heat conduction laws based on thermomass theory and phonon hydrodynamics,” J. Appl. Phys., vol. 110, no. 6, pp. 063504, 2011.
  • Z. Guo, “Energy-mass duality of heat and its applications,” ES Energy Environ., vol. 1, no. 3, pp. 4–15, 2018.
  • Y.-Z. Wang, X.-B. Zhang and X.-N. Song, “A generalized theory of thermoelasticity based on thermomass and its uniqueness theorem,” Acta Mech., vol. 225, no. 3, pp. 797–808, 2014. DOI: 10.1007/s00707-013-1001-4.
  • Y. Dong, B.-Y. Cao and Z.-Y. Guo, “General expression for entropy production in transport processes based on the thermomass model,” Phys. Rev. E, vol. 85, no. 6 Pt 1, pp. 0611072012. DOI: 10.1103/PhysRevE.85.061107.
  • Y. Dong and Z. Guo, “Entropy analyses for hyperbolic heat conduction based on the thermomass model,” Int. J. Heat Mass Transfer, vol. 54, no. 9–10, pp. 1924–1929, 2011. DOI: 10.1016/j.ijheatmasstransfer.2011.01.011.
  • Y. Dong, B.-Y. Cao and Z.-Y. Guo, “Size dependent thermal conductivity of Si nanosystems based on phonon gas dynamics,” Physica E, vol. 56, pp. 256–262, 2014. DOI: 10.1016/j.physe.2013.10.006.
  • J. M. Ziman, Electrons and Phonons: The Theory of Transport Phenomena in Solids. New York, NY: Oxford University Press, 2001.
  • M. Wang, B.-Y. Cao and Z.-Y. Guo, “General heat conduction equations based on the thermomass theory,” Front Heat Mass Transfer, vol. 1, no. 1, pp. 1–8, 2010.
  • A. Sellitto, P. Rogolino and I. Carlomagno, “Heat-pulse propagation along nonequilibrium nanowires in thermomass theory,” Commun. Appl. Ind. Math., vol. 7, no. 2, pp. 39–55, 2016.
  • H. W. Lord and Y. Shulman, “A generalized dynamical theory of thermoelasticity,” J. Mech. Phys. Solids, vol. 15, no. 5, pp. 299–309, 1967. DOI: 10.1016/0022-5096(67)90024-5.
  • R. S. Dhaliwal and H. H. Sherief, “Generalized thermoelasticity for anisotropic media,” Quart. Appl. Math., vol. 38, no. 1, pp. 1–8, 1980. DOI: 10.1090/qam/575828.
  • R. B. Hetnarski and J. Ignaczak, “Generalized thermoelasticity,” J. Therm. Stresses, vol. 22, no. 4-5, pp. 451–476, 1999.
  • H. H. Sherief, “State space formulation for generalized thermoelasticity with one relaxation time including heat sources,” J. Therm. Stresses, vol. 16, no. 2, pp. 163–180, 1993. DOI: 10.1080/01495739308946223.
  • H. H. Sherief and M. N. Anwar, “Problem in generalized thermoelasticity,” J. Therm. Stresses, vol. 9, no. 2, pp. 165–181, 1986. DOI: 10.1080/01495738608961895.
  • M. Othman, “Effect of rotation and relaxation time on a thermal shock problem for a half-space in generalized thermo-viscoelasticity,” Acta Mech., vol. 174, no. 3–4, pp. 129–143, 2005. DOI: 10.1007/s00707-004-0190-2.
  • R. B. Hetnarski and J. Ignaczak, “Generalized thermoelasticity: Closed-form solutions,” J. Therm. Stresses, vol. 16, no. 4, pp. 473–498, 1993. DOI: 10.1080/01495739308946241.
  • H. M. Youssef, “Problem of generalized thermoelastic infinite medium with cylindrical cavity subjected to a ramp-type heating and loading,” Arch. Appl. Mech., vol. 75, no. 8–9, pp. 553–565, 2006. DOI: 10.1007/s00419-005-0440-3.
  • H. M. Youssef, “Dependence of modulus of elasticity and thermal conductivity on reference temperature in generalized thermoelasticity for an infinite material with a spherical cavity,” Appl. Math. Mech., vol. 26, no. 4, pp. 470–475, 2005. DOI: 10.1007/BF02465386.
  • H. Youssef and I. Abbas, “Thermal shock problem of generalized thermoelasticity for an infinitely long annular cylinder with variable thermal conductivity,” CMST, vol. 13, no. 2, pp. 95–100, 2007. DOI: 10.12921/cmst.2007.13.02.95-100.
  • P. J. Chen, M. E. Gurtin and W. O. Williams, “On the thermodynamics of non-simple elastic materials with two temperatures,” J. Appl. Math. Phys. (ZAMP), vol. 20, no. 1, pp. 107–112, 1969. DOI: 10.1007/BF01591120.
  • W. Warren and P. Chen, “Wave propagation in the two temperature theory of thermoelasticityWellenausbreitung in der Zwei-Temperatur-Theorie der Thermoelastizität,” Acta Mech., vol. 16, no. 1–2, pp. 21–33, 1973. DOI: 10.1007/BF01177123.
  • H. Youssef, “Theory of two-temperature-generalized thermoelasticity,” IMA J. Appl. Math., vol. 71, no. 3, pp. 383–390, 2006. DOI: 10.1093/imamat/hxh101.
  • H. Youssef and E. A. Al-Lehaibi, “State-space approach of two-temperature generalized thermoelasticity of one-dimensional problem,” Int. J. Solids Struct., vol. 44, no. 5, pp. 1550–1562, 2007. DOI: 10.1016/j.ijsolstr.2006.06.035.
  • H. M. Youssef and A. El-Bary, “Two-temperature generalized thermoelasticity with variable thermal conductivity,” J. Therm. Stresses, vol. 33, no. 3, pp. 187–201, 2010. DOI: 10.1080/01495730903454793.
  • H. M. Youssef, “Two-temperature generalized thermoelastic infinite medium with cylindrical cavity subjected to moving heat source,” Arch. Appl. Mech., vol. 80, no. 11, pp. 1213–1224, 2010. DOI: 10.1007/s00419-009-0359-1.
  • I. A. Abbas and H. M. Youssef, “Finite element analysis of two-temperature generalized magneto-thermoelasticity,” Arch. Appl. Mech., vol. 79, no. 10, pp. 917–925, 2009. DOI: 10.1007/s00419-008-0259-9.
  • H. M. Youssef, “Two-dimensional problem of a two-temperature generalized thermoelastic half-space subjected to ramp-type heating,” Comput. Math. Model., vol. 19, no. 2, pp. 201–216, 2008. DOI: 10.1007/s10598-008-0014-7.
  • A. Sellitto, V. Tibullo and Y. Dong, “Nonlinear heat-transport equation beyond Fourier law: Application to heat-wave propagation in isotropic thin layers,” Continuum Mech. Thermodyn., vol. 29, no. 2, pp. 411–428, 2017. DOI: 10.1007/s00161-016-0538-6.
  • R. Kovács and P. Ván, “Thermodynamical consistency of the dual-phase-lag heat conduction equation,” Continuum Mech. Thermodyn., vol. 30, no. 6, pp. 1223–1230, 2018. DOI: 10.1007/s00161-017-0610-x.
  • D. Tzou, Macro to Micro Heat Transfer. Washington, DC: Taylor & Francis; Wang, X. Shao, M. Zhang, S., and Liu X., 2013, Biomedical applications of gold nanorod-based multifunctional nano-carriers, J. Nanoparticles Res., vol. 15, pp. 1892–1913, 1996.
  • H. M. Youssef and A. H. Al-Harby, “State-space approach of two-temperature generalized thermoelasticity of infinite body with a spherical cavity subjected to different types of thermal loading,” Arch. Appl. Mech., vol. 77, no. 9, pp. 675–687, 2007. DOI: 10.1007/s00419-007-0120-6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.