178
Views
4
CrossRef citations to date
0
Altmetric
Articles

Thermoelastic damping suppression method of micro-beam resonators with basically constant resonant frequency

ORCID Icon, , , &
Pages 960-973 | Received 06 Dec 2021, Accepted 06 Aug 2022, Published online: 16 Sep 2022

References

  • D. E. Serrano, R. Tabrizian, and F. Ayazi, “Tunable piezoelectric MEMS resonators for real-time clock,” 2011. 2011 Joint Conference of the IEEE International Frequency Control and the European Frequency and Time Forum (FCS) Proceedings; 2–5 May, p. 1–4. DOI: 10.1109/FCS.2011.5977885.
  • G. Zhanshe, et al., “Research development of silicon MEMS gyroscopes: A review,” Microsyst. Technol., vol. 21, no. 10, pp. 2053–2066, 2015. DOI: 10.1007/s00542-015-2645-x.
  • A. Gupta, D. Akin, and R. Bashir, “Single virus particle mass detection using microresonators with nanoscale thickness,” Appl. Phys. Lett., vol. 84, no. 11, pp. 1976–1978, 2004. DOI: 10.1063/1.1667011.
  • D. M. Karabacak, S. H. Brongersma, and M. Crego-Calama, “Enhanced sensitivity volatile detection with low power integrated micromechanical resonators,” Lab Chip, vol. 10, no. 15, pp. 1976–1982, 2010. DOI: 10.1039/b926170b.
  • M. A. A. Hafiz, L. Kosuru, A. Z. Hajjaj, and M. I. Younis, “Highly tunable narrow bandpass MEMS filter,” IEEE Trans. Electron. Dev., vol. 64, no. 8, pp. 3392–3398, 2017. DOI: 10.1109/TED.2017.2716949.
  • J. L. Lopez, et al., “A CMOS-MEMS RF-Tunable bandpass filter based on two High-Q 22-MHz polysilicon clamped-clamped beam resonators,” IEEE Electron. Dev. Lett., vol. 30, no. 7, pp. 718–720, 2009. DOI: 10.1109/LED.2009.2022509.
  • A. Darvishian, et al., “Thermoelastic dissipation in micromachined birdbath shell resonators,” J. Microelectromech. Syst., vol. 26, no. 4, pp. 758–772, 2017. DOI: 10.1109/JMEMS.2017.2715319.
  • S. Schmid and C. Hierold, “Damping mechanisms of single-clamped and prestressed double-clamped resonant polymer micro-beams,” J. Appl. Phys., vol. 104, no. 9, pp. 093516, 2008. DOI: 10.1063/1.3008032.
  • Z. Hao, A. Erbil, and F. Ayazi, “An analytical model for support loss in micromachined beam resonators with in-plane flexural vibrations,” Sensors Actuators A: Phys., vol. 109, no. 1-2, pp. 156–164, 2003. DOI: 10.1016/j.sna.2003.09.037.
  • A. Frangi, A. Bugada, M. Martello, and P. T. Savadkoohi, “Validation of PML-based models for the evaluation of anchor dissipation in MEMS resonators,” European J. Mechanics - A/Solids, vol. 37, pp. 256–265, 2013. DOI: 10.1016/j.euromechsol.2012.06.008.
  • K. Y. Yasumura, et al., “Quality factors in micron- and submicron-thick cantilevers,” J. Microelectromech. Syst., vol. 9, no. 1, pp. 117–125, 2000. DOI: 10.1109/84.825786.
  • Y. Jinling, T. Ono, and M. Esashi, “Energy dissipation in submicrometer thick single-crystal silicon cantilevers,” J. Microelectromech. Syst., vol. 11, no. 6, pp. 775–783, 2002. DOI: 10.1109/JMEMS.2002.805208.
  • M. Imboden and P. Mohanty, “Dissipation in nanoelectromechanical systems,” Phys. Rep., vol. 534, no. 3, pp. 89–146, 2014. DOI: 10.1016/j.physrep.2013.09.003.
  • O. Ergincan, G. Palasantzas, and B. J. Kooi, “Influence of surface modification on the quality factor of microresonators,” Phys. Rev. B, vol. 85, no. 20, pp. 205420, 2012. DOI: 10.1103/PhysRevB.85.205420.
  • C. Zener, “Internal friction in solids. I. Theory of internal friction in reeds,” Phys. Rev., vol. 52, no. 3, pp. 230–235, 1937. DOI: 10.1103/PhysRev.52.230.
  • R. Lifshitz and M. L. Roukes, “Thermoelastic damping in micro- and nanomechanical systems,” Phys. Rev. B, vol. 61, no. 8, pp. 5600–5609, 2000. DOI: 10.1103/PhysRevB.61.5600.
  • J. Choi, M. Cho, and J. Rhim, “Efficient prediction of the quality factors of micromechanical resonators,” J. Sound Vib., vol. 329, no. 1, pp. 84–95, 2010. DOI: 10.1016/j.jsv.2009.09.013.
  • Y. Sun and M. Saka, “Thermoelastic damping in micro-scale circular plate resonators,” J. Sound & Vibration, vol. 329, no. 3, pp. 328–337, 2010. DOI: 10.1016/j.jsv.2009.09.014.
  • S. K. De and N. R. Aluru, “Theory of thermoelastic damping in electrostatically actuated microstructures,” Phys. Rev. B, vol. 74, no. 14, pp. 2952–2961, 2006.
  • R. N. Candler, et al., “Impact of slot location on thermoelastic dissipation in micromechanical resonators,” The 13th International Conference on Solid-State Sensors, Actuators and Microsystems, 2005. Digest of Technical Papers. TRANSDUCERS '05, 2005. pp. 597–600.
  • R. N. Candler, et al., “Impact of Geometry on Thermoelastic Dissipation in Micromechanical Resonant Beams,” J. Microelectromech. Syst., vol. 15, no. 4, pp. 927–934, 2006. DOI: 10.1109/JMEMS.2006.879374.
  • X. Guo and Y. B. Yi, “Suppression of thermoelastic damping in MEMS beam resonators by piezoresistivity,” J. Sound Vib., vol. 333, no. 3, pp. 1079–1095, 2014. DOI: 10.1016/j.jsv.2013.09.041.
  • A. L. Alter, et al., “Quality factor extraction and enhancement across temperature in ring resonators,” J. Microelectromech. Syst., vol. 29, no. 5, pp. 1124–1126, 2020. DOI: 10.1109/JMEMS.2020.3004748.
  • X. Zhou, et al., “Mitigating thermoelastic dissipation of flexural micromechanical resonators by decoupling resonant frequency from thermal relaxation rate,” Phys. Rev. Appl., vol. 8, no. 6, pp. 064033, 2017. DOI: 10.1103/PhysRevApplied.8.064033.
  • Y. Fu, L. Li, K. Duan, and Y. Hu, “A thermodynamic design methodology for achieving ultra-high frequency–quality product of microresonators,” Thin-Walled Struct., vol. 166, pp. 108104, 2021. DOI: 10.1016/j.tws.2021.108104.
  • J. J. Lake, A. E. Duwel, and R. N. Candler, “Particle Swarm optimization for design of slotted MEMS resonators with low thermoelastic dissipation,” J. Microelectromech. Syst., vol. 23, no. 2, pp. 364–371, 2014. DOI: 10.1109/JMEMS.2013.2275999.
  • R. Kushnir, “Thermal stresses – advanced theory and applications,” J. Thermal Stresses, vol. 33, no. 1, pp. 76–78, 2009. DOI: 10.1080/01495730903538421.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.