1,248
Views
3
CrossRef citations to date
0
Altmetric
Articles

Thermal stresses in an elastic parallelepiped

& ORCID Icon
Pages 1009-1028 | Received 19 May 2022, Accepted 17 Aug 2022, Published online: 15 Sep 2022

References

  • G. Lamé, Leçons Sur la Théorie Mathématique de L’élasticité Des Corps Solids. Paris: Bachelier, 1852, p. 335.
  • V. V. Meleshko, “Selected topics in the history of the two-dimensional biharmonic problem,” Appl. Mech. Rev., vol. 56, no. 1, pp. 33–85, 2003. DOI: 10.1115/1.1521166.
  • S. O. Papkov, “Three-dimensional dynamic problem of the theory of elasticity for a parallelepiped,” J. Math. Sci., vol. 215, no. 2, pp. 121–142, 2016. DOI: 10.1007/s10958-016-2827-9.
  • S. A. Lurie and V. V. Vasiliev, The Biharmonic Problem in the Theory of Elasticity. Luxembourg: Gordon and Breach, 1995,
  • A. M. Al-Mukhtar, “Case studies of aircraft fuselage cracking,” AEF, vol. 33, pp. 11–18, 2019. DOI: 10.4028/www.scientific.net/AEF.33.11.
  • P. A. Withey, “Fatigue failure of the De Havilland Comet 1,” Eng. Failure Anal., vol. 4, no. 2, pp. 147–154, 1997. DOI: 10.1016/S1350-6307(97)00005-8.
  • T. Goto, I. Ohno, and Y. Sumino, “The determination of the elastic constants of natural almandine-pyrope garnet by rectangular parallelepiped resonance method,” J. Phys. Earth, vol. 24, no. 2, pp. 149–156, 1976. DOI: 10.4294/jpe1952.24.149.
  • J. I. Etcheverry and G. A. Sánchez, “Resonance frequencies of parallelepipeds for determination of elastic moduli: An accurate numerical treatment,” J. Sound Vibration, vol. 321, no. 3–5, pp. 631–646, 2009. DOI: 10.1016/j.jsv.2008.10.026.
  • J. Aboudi, “Effective thermoelastic constants of short-fiber composites,” Fibre Sci. Technol., vol. 20, no. 3, pp. 211–225, 1984. DOI: 10.1016/0015-0568(84)90042-3.
  • A. Vattré and E. Pan, “Thermoelasticity of multilayered plates with imperfect interfaces,” Int. J. Eng. Sci., vol. 158, pp. 103409, 2021. DOI: 10.1016/j.ijengsci.2020.103409.
  • A. V. Nasedkin, A. A. Nasedkina, and A. Rajagopal, “Finite element simulation of thermoelastic effective properties of periodic masonry with porous bricks,” in Wave Dynamics and Composite Mechanics for Microstructured Materials and Metamaterials, Advanced Structured Materials, vol. 59, M. Sumbatyan, Eds. Singapore: Springer, 2017.
  • N. Y. Taits, A. G. Sabel’nikov, A. N. Minaev, and V. V. Moshura, “Maximum temperature drops and thermoelastic stresses in the symmetric heating of prisms and parallelepipeds,” Strength Mater., vol. 3, no. 12, pp. 1405–1406, 1971. DOI: 10.1007/BF01527701.
  • M. N. Magomedov, “On dependences of the thermoelastic properties on size and shape of an iron nanocrystal,” Nanotechnol. Russia, vol. 10, no. 1–2, pp. 89–99, 2015. DOI: 10.1134/S1995078015010127.
  • X. Sha and R. E. Cohen, “First-principles thermoelasticity of bcc iron under pressure,” Phys. Rev. B., vol. 74, no. 21, pp. 214111, 2006. DOI: 10.1103/PhysRevB.74.214111.
  • V. A. Şeremet, “Method to derive thermoelastic Green’s functions for bounded domains (on examples of two-dimensional problems for parallelepipeds),” Acta Mech., vol. 227, no. 12, pp. 3603–3620, 2016. DOI: 10.1007/s00707-016-1680-8.
  • V. Şeremet and D. Şeremet, “Solution in integrals of a 3D BVP of thermoelasticity: Green’s functions and integration formula for thermal stresses within a semi-bounded parallelepiped,” Acta Mech., vol. 228, no. 12, pp. 4471–4490, 2017. DOI: 10.1007/s00707-017-1923-3.
  • N. Khomasuridze, “Thermoelastic equilibrium of a parallelepiped with nongomogeneous symmetrt and antisymmetry conditions onits faces,” Georgian Math. J., vol. 7, no. 4, pp. 701–722, 2000. DOI: 10.1515/GMJ.2000.701.
  • N. Khomasuridze, N. Zirakashvili, R. Janjgava, and M. Narmania, “Analytical solution of classical and non-classical boundary value contact problems of thermoelasticity for a rectangular parallelepiped consisting of compressible and incompressible elastic layers and numerical example of the solution of such problems,” Arch. Appl. Mech., vol. 84, no. 12, pp. 1701–1713, 2014. DOI: 10.1007/s00419-014-0867-5.
  • N. Khomasuridze and R. Janjgava, “Solution of some boundary value thermoelasticity problems for a rectangular parallelepiped taking into account microthermal effects,” Meccanica, vol. 51, no. 1, pp. 211–221, 2016. DOI: 10.1007/s11012-015-0207-z.
  • N. Khomasuridze and R. Janjgava, “Some non-classical boundary value problems of thermoelasticity and a three-dimensional analogue of Muskhelishvili’s thermal effect,” J. Thermal Stress., vol. 36, no. 7, pp. 699–713, 2013. DOI: 10.1080/01495739.2013.787850.
  • A. V. Berdakchiev, “Problems of coupled thermoelasticity for a parallelepiped,” J. Eng. Phys., vol. 41, no. 1, pp. 794–800, 1981. DOI: 10.1007/BF00824831.
  • G. F. Dargush and P. K. Banerjee, “Boundary element methods in three-dimensional thermoelasticity,” Int. J. Solids Struct., vol. 26, no. 2, pp. 199–216, 1990. DOI: 10.1016/0020-7683(90)90052-W.
  • S. A. Lychev, A. V. Manzhirov, and S. V. Joubert, “Closed solutions of boundary-value problems of coupled thermoelasticity,” Mech. Solids, vol. 45, no. 4, pp. 610–623, 2010. DOI: 10.3103/S0025654410040102.
  • A. L. Levitin, S. A. Lychev, and I. N. Saifutdinov, “Transient dynamical problem for a accreted thermoelastic parallelepiped,” in Proc. World Congr. Eng., London, UK, July 2–4, 2014, vol. II, WCE 2014.
  • A. L. Levitin and S. A. Lychev, “Transient problem for a accreted thermoelastic block,” in Transactions on Engineering Technologies, G. C. Yang, S. I. Ao, L. Gelman, Eds. Dordrecht: Springer, 2015.
  • M. R. Eslami, R. B. Hetnarski, J. Ignaczak, N. Noda, N. Sumi, and Y. Tanigawa, Theory of Thermal Stresses. Explanations, Problems and Solutions, New York: Springer, 2013.
  • V. Grinchenko, “The biharmonic problem and progress in the development of analytical methods for the solution of boundary-value problems,” J. Eng. Math., vol. 46, no. 3/4, pp. 281–297, 2003. DOI: 10.1023/A:1025049526317.
  • R. Kushnir, A. Yasinskyy, Y. Tokovyy, and E. Hart, “Inverse thermoelastic analysis of a cylindrical tribo-couple,” Materials, vol. 14, no. 10, pp. 2657, 2021. DOI: 10.3390/ma14102657.
  • R. M. Kushnir, A. V. Yasinskyy, and Y. V. Tokovyy, “Effect of material properties in the direct and inverse thermomechanical analyses of multilayer functionally graded solids,” Adv. Eng. Mater., vol. 24, no. 5, pp. 2100875, 2022. DOI: 10.1002/adem.202100875.
  • A. V. Yasinskyy and Y. V. Tokovyy, “Control of two-dimensional stationary thermal stresses in a half space with the help of external thermal loading,” J. Math. Sci., vol. 261, no. 1, pp. 115–126, 2022. DOI: 10.1007/s10958-022-05744-9.
  • V. M. Vigak, “Control of thermal stresses and displacements in thermoelastic bodies,” J. Math. Sci., vol. 62, no. 1, pp. 2506–2511, 1992. DOI: 10.1007/BF01099140.
  • Y. Tokovyy and C.-C. Ma, The Direct Integration Method for Elastic Analysis of Nonhomogeneous Solids. Newcastle: Cambridge Scholars Publishing, 2021.
  • V. M. Vigak, “A direct method of integrating the equations of two-dimensional problems of elasticity and thermoelasticity for orthotropic materials,” J. Math. Sci., vol. 88, no. 3, pp. 342–346, 1998. DOI: 10.1007/BF02365249.
  • B. M. Kalynyak, Y. V. Tokovyy, and A. V. Yasinskyy, “Direct and inverse problems of thermomechanics concerning the optimization and identification of the thermal stressed state of deformed solids,” J. Math. Sci., vol. 236, no. 1, pp. 21–34, 2019. DOI: 10.1007/s10958-018-4095-3.
  • V. M. Vihak, M. Y. Yuzvyak, and A. V. Yasinskij, “The solution of the plane thermoelasticity problem for a rectangular domain,” J. Thermal Stress., vol. 21, no. 5, pp. 545–561, 1998. DOI: 10.1080/01495739808956162.
  • V. M. Vihak and Y. V. Tokovyi, “Investigation of the plane stressed state in a rectangular domain,” Mater. Sci. , vol. 38, no. 2, pp. 230–237, 2002. DOI: 10.1023/A:1020994204806.
  • M. Yuzvyak, Y. Tokovyy, and A. Yasinskyy, “Axisymmetric thermal stresses in an elastic hollow cylinder of finite length,” J. Thermal Stress., vol. 44, no. 3, pp. 1–18, 2020. DOI: 10.1080/01495739.2020.1826376.
  • Y. V. Tokovyy, M. Y. Yuzvyak, and A. V. Yasinskyy, “Representation of solutions to the plane elasticity problems for a rectangular domain via Vihak’s functions,” BKNUPhM, vol. 3, no. 3, pp. 123–126, 2021. DOI: 10.17721/1812-5409.2021/3.24.
  • V. M. Vihak, “Continuity equations for a deformable solid,” J. Math. Sci., vol. 99, no. 5, pp. 1655–1661, 2000. DOI: 10.1007/BF02674189.
  • V. M. Vigak and Y. V. Tokovyi, “Construction of elementary solutions to a plane elastic problem for a rectangular domain,” Int. Appl. Mech., vol. 38, no. 7, pp. 829–836, 2002. DOI: 10.1023/A:1020837409659.
  • S. P. Timoshenko and J. N. Goodier, Theory of Elasticity. New York: McGraw-Hill Book Company, Inc., 1951.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.