319
Views
8
CrossRef citations to date
0
Altmetric
Articles

Snap-buckling and resonance of functionally graded graphene reinforced composites curved beams resting on elastic foundations in thermal environment

, &
Pages 1029-1042 | Received 29 Jun 2022, Accepted 31 Aug 2022, Published online: 27 Sep 2022

References

  • H. Xiu and R. B. Davis, “Changing the critical snap-through loads of post-buckled beams using piezoelectric actuation,” Smart Mater. Struct., vol. 29, no. 3, pp. 035001, 2020. DOI: 10.1088/1361-665X/ab5d5d.
  • A. S. Sayyad and P. V. Avhad, “Higher-order model for the thermal analysis of laminated composite, sandwich, and functionally graded curved beams,” J. Thermal Stresses, vol. 45, no. 5, pp. 382–400, 2022. DOI: 10.1080/01495739.2022.2050476.
  • B. P. Patel, et al., “On the internal resonance characteristics of curved beams,” J. Vibration Control, vol. 22, no. 10, pp. 2400–2405, 2016. DOI: 10.1177/1077546314547375.
  • S. Ye, X. Mao, H. Ding, et al. "Nonlinear vibrations of a slightly curved beam with nonlinear boundary conditions," Intern. J. Mech. Sci., vol. 168, pp. 105294, 2020. DOI: 10.1016/j.ijmecsci.2019.105294.
  • H. Ding and L. Q. Chen, “Nonlinear vibration of a slightly curved beam with quasi-zero-stiffness isolators,” Nonlinear Dyn., vol. 95, no. 3, pp. 2367–2382, 2019. DOI: 10.1007/s11071-018-4697-9.
  • M. S. Beg and M. Y. Yasin, “Bending, free and forced vibration of functionally graded deep curved beams in thermal environment using an efficient layerwise theory,” Mech. Mater., vol. 159, pp. 103919, 2021. DOI: 10.1016/j.mechmat.2021.103919.
  • H. Mao, G. Yu, W. Liu, et al., “Out-of-plane free vibration and forced harmonic response of a curved beam,” Shock Vibration, vol. 2020, no. 1, pp. 8891585, 2021. DOI: 10.1155/2020/8891585.
  • I. Bakhtiari, S. J. Behrouz and O. Rahmani, “Nonlinear forced vibration of a curved micro beam with a surface-mounted light-driven actuator,” Commun. Nonlinear Sci. Numerical Simul., vol. 91, pp. 105420, 2020. DOI: 10.1016/j.cnsns.2020.105420.
  • N. Mohamed, M. A. Eltaher, S. A. Mohamed and L. F. Seddek, “Numerical analysis of nonlinear free and forced vibrations of buckled curved beams resting on nonlinear elastic foundations,” Int. J. Non-Linear Mech., vol. 101, pp. 157–173, 2018. DOI: 10.1016/j.ijnonlinmec.2018.02.014.
  • Z. Li, B. Chen and B. Lin, “Analytical solutions of the forced vibration of Timoshenko micro/nano-beam under axial tensions supported on Winkler-Pasternak foundation,” European Physical J. Plus, vol. 137, no. 1, pp. 153, 2022. DOI: 10.1140/epjp/s13360-022-02360-z.
  • H. Babaei, “Free vibration and snap-through instability of FG-CNTRC shallow arches supported on nonlinear elastic foundation,” Appl. Math. Comput., vol. 413, pp. 126606, 2022. DOI: 10.1016/j.amc.2021.126606.
  • H. Babaei, Y. Kiani and M. R. Eslami, “Geometrically nonlinear analysis of shear deformable FGM shallow pinned arches on nonlinear elastic foundation under mechanical and thermal loads,” Acta Mech., vol. 229, no. 7, pp. 3123–3141, 2018. DOI: 10.1007/s00707-018-2134-2.
  • A. T. Atacan and R. F. Yükseler, “Snap-through instability of slightly curved beams under sinusoidal loading based on nonlocal elasticity theory,” Mech. Based Design Struct. Mach., vol. 229, no. 7, pp. 1–12, 2018. DOI: 10.1080/15397734.2021.1901736.
  • H. Babaei and M. R. Eslami, “Nonlinear analysis of thermal-mechanical coupling bending of FGP infinite length cylindrical panels based on PNS and NSGT—ScienceDirect,” Appl. Math. Modelling, vol. 91, pp. 1061–1080, 2021. DOI: 10.1016/j.apm.2020.10.004.
  • Y. Kiani, “NURBS-based thermal buckling analysis of graphene platelet reinforced composite laminated skew plates,” J. Thermal Stresses, vol. 43, no. 1, pp. 90–108, 2020. DOI: 10.1080/01495739.2019.1673687.
  • D. Liu, Y. Zhou and J. Zhu, “On the free vibration and bending analysis of functionally graded nanocomposite spherical shells reinforced with graphene nanoplatelets: three-dimensional elasticity solutions,” Engng. Struct., vol. 226, pp. 111376, 2021. DOI: 10.1016/j.engstruct.2020.111376.
  • Z. Qin, S. Zhao, X. Pang, B. Safaei and F. Chu, “A unified solution for vibration analysis of laminated functionally graded shallow shells reinforced by graphene with general boundary conditions,” Int. J. Mech. Sci., vol. 170, pp. 105341, 2020. DOI: 10.1016/j.ijmecsci.2019.105341.
  • Z. Chen, A. Wang, B. Qin, Q. Wang and R. Zhong, “Investigation on free vibration and transient response of functionally graded graphene platelets reinforced cylindrical shell resting on elastic foundation,” European Physical J. Plus, vol. 135, no. 7, pp. 582, 2020. DOI: 10.1140/epjp/s13360-020-00577-4.
  • H. S. Shen, Y. Xiang and Y. Fan, “Vibration of thermally postbuckled FG-GRC laminated plates resting on elastic foundations,” J. Vibration Control, vol. 25, no. 9, pp. 1507–1520, 2019. DOI: 10.1177/1077546319825671.
  • Y. Q. Wang, C. Ye and J. W. Zu, “Nonlinear vibration of metal foam cylindrical shells reinforced with graphene platelets,” Aerospace Sci. Technol., vol. 85, pp. 359–370, 2019. DOI: 10.1016/j.ast.2018.12.022.
  • J. J. Mao, W. Zhang and H. M. Lu, “Static and dynamic analyses of graphene-reinforced aluminium-based composite plate in thermal environment,” Aerospace Sci. Technol., vol. 107, pp. 106354, 2020. DOI: 10.1016/j.ast.2020.106354.
  • X. Guo, B. Zhang, D. Cao and L. Sun, “Influence of nonlinear terms on dynamical behavior of graphene reinforced laminated composite plates,” Appl. Math. Modelling, vol. 78, pp. 169–184, 2020. DOI: 10.1016/j.apm.2019.10.030.
  • M. Song, X. Li, S. Kitipornchai, Q. Bi and J. Yang, “Low-velocity impact response of geometrically nonlinear functionally graded graphene platelet-reinforced nanocomposite plates,” Nonlinear Dyn., vol. 95, no. 3, pp. 2333–2352, 2019. DOI: 10.1007/s11071-018-4695-y.
  • Y. Fan, Y. Xiang, H. S. Shen and D. Hui, “Nonlinear low-velocity impact response of FG-GRC laminated plates resting on visco-elastic foundations,” Composites Part B Engng., vol. 144, pp. 184–194, 2018. DOI: 10.1016/j.compositesb.2018.02.016.
  • J. L. Zhao, et al., “Vibration characteristics of functionally graded carbon nanotube-reinforced composite double-beams in thermal environments,” Steel Composite Struct., vol. 43, no. 6, pp. 797–808, 2022. DOI: 10.12989/scs.2022.43.6.797.
  • Y. Y. Zhang, Y. X. Wang, X. Zhang, H. M. Shen and G. L. She, “On snap-buckling of FG-CNTR curved nanobeams considering surface effects,” Steel Composite Struct., vol. 38, no. 3, pp. 293–304, 2021. DOI: 10.12989/scs.2021.38.3.293.
  • Y. Dong, X. Li, K. Gao, Y. Li and J. Yang, “Harmonic resonances of graphene-reinforced nonlinear cylindrical shells: effects of spinning motion and thermal environment,” Nonlinear Dyn., vol. 99, no. 2, pp. 981–1000, 2020. DOI: 10.1007/s11071-019-05297-8.
  • G. L. She, H. B. Liu and B. Karami, “Resonance analysis of composite curved microbeams reinforced with graphene nanoplatelets,” Thin-Walled Struct., vol. 160, pp. 107407, 2021. DOI: 10.1016/j.tws.2020.107407.
  • R. Moradi-Dastjerdi, A. Radhi and K. Behdinan, “Damped dynamic behavior of an advanced piezoelectric sandwich plate,” Composite Struct., vol. 243, no. 2, pp. 112243, 2020. DOI: 10.1016/j.compstruct.2020.112243.
  • H. S. Shen, A Two-Step Perturbation Method in Nonlinear Analysis of Beams, Plates and Shells,” Singapore: John Wiley & Sons Inc., 2013.
  • S.-H. Chen and Y.-K. Cheung, “A modified Lindstedt–Poincaré method for a strongly nonlinear system with quadratic and cubic nonlinearities,” Shock Vibration, vol. 3, no. 4, pp. 279–285, 1996. DOI: 10.1155/1996/231241.
  • H. Babaei, Y. Kiani and M. R. Eslami, “Large amplitude free vibration analysis of shear deformable FGM shallow arches on nonlinear elastic foundation,” Thin-Walled Struct., vol. 3, no. 4, pp. 279–285, 2021. DOI: 10.1016/j.tws.2019.106237.
  • G. L. She, X. Y. Jiang and B. Karami, “On thermal snap-buckling of FG curved nanobeams,” Mater. Res. Express, vol. 6, no. 11, pp. 115008, 2019. DOI: 10.1088/2053-1591/ab44f137.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.