201
Views
8
CrossRef citations to date
0
Altmetric
Articles

Thermoelastic damping analysis in nanobeam resonators considering thermal relaxation and surface effect based on the nonlocal strain gradient theory

, , &
Pages 974-992 | Received 15 Mar 2022, Accepted 19 Jun 2022, Published online: 17 Oct 2022

References

  • B. Bhushan, MEMS/NEMS and BioMEMS/BioNEMS: Tribology, Mechanics, Materials and Devices. Berlin, Heidelberg: Springer Handbook of Nanotechnology, Springer, 2017, pp. 1331–1416.
  • Y. S. Wei, L. Zou, H. F. Wang, Y. Wang, and Q. Xu, “Micro/nano‐scaled metal‐organic frameworks and their derivatives for energy applications,” Adv. Energy Mater., vol. 12, no. 4, pp. 2003970, 2022. DOI: 10.1002/aenm.202003970.
  • N. A. Fleck, G. M. Muller, M. F. Ashby, and J. W. Hutchinson, “Strain gradient plasticity: theory and experiment,” Acta Metal Mater., vol. 42, no. 2, pp. 475–487, 1994. DOI: 10.1016/0956-7151(94)90502-9.
  • D. C. C. Lam, F. Yang, A. C. M. Chong, J. Wang, and P. Tong, “Experiments and theory in strain gradient elasticity,” J. Mech. Phys. Solids, vol. 51, no. 8, pp. 1477–1508, 2003. DOI: 10.1016/S0022-5096(03)00053-X.
  • E. Kröner, “Elasticity theory of material with long-range cohesive forces,” Int. J. Solids Struct., vol. 3, no. 5, pp. 731–742, 1967. DOI: 10.1016/0020-7683(67)90049-2.
  • A. C. Eringen, “On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves,” J. Appl. Phys., vol. 54, no. 9, pp. 4703–4710, 1983. DOI: 10.1063/1.332803.
  • A. C. Eringen and D. G. B. Edelen, “On nonlocal elasticity,” Int. J. Eng. Sci., vol. 10, no. 3, pp. 233–248, 1972. DOI: 10.1016/0020-7225(72)90039-0.
  • X. Zhu and L. Li, “Longitudinal and torsional vibrations of size-dependent rods via nonlocal integral elasticity,” Int. J. Mech. Sci., vol. 133, pp. 639–650, 2017. DOI: 10.1016/j.ijmecsci.2017.09.030.
  • M. A. Eltaher, M. E. Khater, and S. A. Emam, “A review on nonlocal elastic models for bending, buckling, vibrations, and wave propagation of nanoscale beams,” Appl. Math. Model., vol. 40, no. 56, pp. 4109–4128, 2016. DOI: 10.1016/j.apm.2015.11.026.
  • R. D. Mindlin and N. N. Eshel, “On first strain-gradient theories in linear elasticity,” Int. J. Solids Struct., vol. 4, no. 1, pp. 109–124, 1968. DOI: 10.1016/0020-7683(68)90036-X.
  • R. A. Toupin, “Elastic materials with couple-stresses,” Arch. Rational Mech. Anal., vol. 11, no. 1, pp. 385–414, 1962. DOI: 10.1007/bf00253945.
  • W. T. Koiter, “Couple stresses in the theory of elasticity, I. II,” Proc. K. Ned. Akad. Wet., vol. 67, pp. 17–44, 1964.
  • R. D. Mindlin and H. F. Tiersten, “Effects of couple-stresses in linear elasticity,” Arch. Rational Mech. Anal., vol. 11, no. 1, pp. 415–448, 1962. DOI: 10.1007/BF00253946.
  • F. Yang, A. C. M. Chong, D. C. C. Lam, and P. Tong, “Couple stress based strain gradient theory for elasticity,” Int. J. Solids Struct., vol. 39, no. 10, pp. 2731–2743, 2002. DOI: 10.1016/S0020-7683(02)00152-X.
  • C. W. Lim, G. Zhang, and J. N. Reddy, “A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation,” J. Mech. Phys. Solids, vol. 78, pp. 298–313, 2015. DOI: 10.1016/j.jmps.2015.02.001.
  • X. B. Li, L. Li, Y. J. Hu, Z. Ding, and W. M. Deng, “Bending, buckling and vibration of axially functionally graded beams based on nonlocal strain gradient theory,” Compos. Struct., vol. 165, pp. 250–265, 2017. DOI: 10.1016/j.compstruct.2017.01.032.
  • B. Alizadeh Hamidi, F. Khosravi, S. A. Hosseini, and R. Hassannejad, “Closed form solution for dynamic analysis of rectangular nanorod based on nonlocal strain gradient,” Wave Random Complex, vol. 32, no. 05, pp. 1–17, 2020. DOI: 10.1080/17455030.2020.1843737.
  • L. Li, X. Li, and Y. Hu, “Free vibration analysis of nonlocal strain gradient beams made of functionally graded material,” Int. J. Eng. Sci., vol. 102, pp. 77–92, 2016. DOI: 10.1016/j.ijengsci.2016.02.010.
  • H. Tang, L. Li, and Y. Hu, “Coupling effect of thickness and shear deformation on size-dependent bending of micro/nano-scale porous beams,” Appl. Math. Model., vol. 66, pp. 527–547, 2019. DOI: 10.1016/j.apm.2018.09.027.
  • W. Chen, L. Wang, and H. Dai, “Stability and nonlinear vibration analysis of an axially loaded nanobeam based on nonlocal strain gradient theory,” Int. J. Appl. Mech., vol. 11, no. 07, pp. 1950069, 2019. DOI: 10.1142/S1758825119500698.
  • K. Ghorbani, A. Rajabpour, and M. Ghadiri, “Determination of carbon nanotubes size-dependent parameters: molecular dynamics simulation and nonlocal strain gradient continuum shell model,” Mech. Based Des. Struct. Mach., vol. 49, no. 1, pp. 103–120, 2021. DOI: 10.1080/15397734.2019.1671863.
  • L. H. He, C. W. Lim, and B. S. Wu, “A continuum model for size-dependent deformation of elastic films of nano-scale thickness,” Int. J. Solids Struct., vol. 41, no. 34, pp. 847–857, 2004. DOI: 10.1016/j.ijsolstr.2003.10.001.
  • M. E. Gurtin and A. I. Murdoch, “A continuum theory of elastic material surfaces,” Arch. Rational Mech. Anal., vol. 57, no. 4, pp. 291–323, 1975. DOI: 10.1007/BF00261375.
  • T. Y. Chen, M.-S. Chiu, and C.-N. Weng, “Derivation of the generalized Young–Laplace equation of curved interfaces in nanoscaled solids,” J. Appl. Phys., vol. 100, no. 7, pp. 074308, 2006. DOI: 10.1063/1.2356094.
  • M. E. Gurtin, J. Weissmüller, and F. Larché, “A general theory of curved deformable interfaces in solids at equilibrium,” Philos. Mag. A, vol. 78, no. 5, pp. 1093–1109, 1998. DOI: 10.1080/01418619808239977.
  • X. Zhu and L. Li, “Three-dimensionally nonlocal tensile nanobars incorporating surface effect: a self-consistent variational and well-posed model,” Sci. China Technol. Sci., vol. 64, no. 11, pp. 1–14, 2021. DOI: 10.1007/s11431-021-1822-0.
  • Y. Jiang, L. Li, and Y. Hu, “A nonlocal surface theory for surface–bulk interactions and its application to mechanics of nanobeams,” Int. J. Eng. Sci., vol. 172, pp. 103624, 2022. DOI: 10.1016/j.ijengsci.2022.103624.
  • M. Hashemian, S. Foroutan, and D. Toghraie, “Comprehensive beam models for buckling and bending behavior of simple nanobeam based on nonlocal strain gradient theory and surface effects,” Mech. Mater., vol. 139, pp. 103209, 2019. DOI: 10.1016/j.mechmat.2019.103209.
  • L. Li, Y. Hu, and L. Ling, “Wave propagation in viscoelastic single-walled carbon nanotubes with surface effect under magnetic field based on nonlocal strain gradient theory,” Phys. E, vol. 75, pp. 118–124, 2016. DOI: 10.1016/j.physe.2015.09.028.
  • B. A. Hamidi, S. A. Hosseini, H. Hayati, and R. Hassannejad, “Forced axial vibration of micro and nanobeam under axial harmonic moving and constant distributed forces via nonlocal strain gradient theory,” Mech. Based Des. Struct. Mach., vol. 50, no. 5, pp. 1491–1505, 2022. DOI: 10.1080/15397734.2020.1744003.
  • J. L. Yang, T. Ono, and M. Esashi, “Energy dissipation in submicrometer thick single-crystal silicon cantilevers,” J. Microelectromech. Syst., vol. 11, no. 6, pp. 775–783, 2002. DOI: 10.1109/JMEMS.2002.805208.
  • C. Zener, “Internal friction in solids II. General theory of thermoelastic internal friction,” Phys. Rev., vol. 53, no. 1, pp. 117–118, 1938. DOI: 10.1063/1.2808418.
  • C. Zener, “Internal friction in solids I. Theory of internal friction in reeds,” Phys. Rev., vol. 52, no. 3, pp. 230–235, 1937. DOI: 10.1103/PhysRev.52.230.
  • R. Lifshitz and M. L. Roukes, “Thermoelastic damping in micro- and nano-mechanical systems,” Phys. Rev. B, vol. 61, no. 8, pp. 5600–5609, 2000. DOI: 10.1103/PhysRevB.61.5600.
  • J. Segovia-Fernandez and G. Piazza, “Thermoelastic damping in the electrodes determines Q of AlN contour mode resonators,” J. Microelectromech. Syst., vol. 26, no. 3, pp. 550–558, 2017. DOI: 10.1109/JMEMS.2017.2672962.
  • M. Imboden and P. Mohanty, “Dissipation in nanoelectromechanical systems,” Phys. Rep., vol. 534, no. 3, pp. 89–146, 2014. DOI: 10.1016/j.physrep.2013.09.003.
  • M. A. Biot, “Thermoelasticity and irreversible thermodynamics,” J. Appl. Phys., vol. 27, no. 3, pp. 240–253, 1956. DOI: 10.1063/1.1722351.
  • V. Peshkor, “Second sound in Helium II,” J. Phys., vol. 8, pp. 381–382, 1944.
  • P. Vernotte, “Les paradoxes de la theorie continue de l‘equation de la chaleur,” C. R. Phys., vol. 246, no. 22, pp. 3154–3155, 1958.
  • C. Cattaneo, Sulla Conduzione Del Calore. Berlin Heidelberg: Springer, 2011.
  • D. S. Chandrasekharaiah, “Hyperbolic thermoelasticity: a review of recent literature,” Appl. Mech. Rev., vol. 51, no. 12, pp. 705–729, 1998. DOI: 10.1115/1.3098984.
  • D. Y. Tzou, “A unified field approach for heat conduction from macro- to micro-scales,” J. Heat Transfer, vol. 117, no. 1, pp. 8–16, 1995. DOI: 10.1115/1.2822329.
  • S. K. Roy Choudhuri, “On a thermoelastic three-phase-lag model,” J. Therm. Stresses, vol. 30, no. 3, pp. 231–238, 2007. DOI: 10.1080/01495730601130919.
  • A. M. Zenkour, “Refined two-temperature multi-phase-lags theory for thermomechanical response of microbeams using the modified couple stress analysis,” Acta Mech., vol. 229, no. 9, pp. 3671–3692, 2018. DOI: 10.1007/s00707-018-2172-9.
  • H. W. Lord and Y. Shulman, “A generalized dynamical theory of thermoelasticity,” J. Mech. Phys. Solids, vol. 15, no. 5, pp. 299–309, 1967. DOI: 10.1016/0022-5096(67)90024-5.
  • A. E. Green and P. M. Naghdi, “Thermoelasticity without energy dissipation,” J. Elasticity, vol. 31, no. 3, pp. 189–208, 1993. DOI: 10.1007/BF00044969.
  • A. E. Green and K. A. Lindsay, “Thermoelasticity,” J. Elasticity, vol. 2, no. 1, pp. 1–7, 1972. DOI: 10.1007/BF00045689.
  • A. E. Abouelregal, M. A. Elhagary, A. Soleiman, and K. M. Khalil, “Generalized thermoelastic-diffusion model with higher-order fractional time-derivatives and four-phase-lags,” Mech. Based Des. Struct. Mach., vol. 50, no. 3, pp. 1539–7734, 2020. DOI: 10.1080/15397734.2020.1730189.
  • F. Ebrahimi and M. R. Barati, “Thermo-mechanical vibration analysis of nonlocal flexoelectric/piezoelectric beams incorporating surface effects,” Struct. Eng. Mech., vol. 65, no. 4, pp. 435–445, 2018. DOI: 10.12989/sem.2018.65.4.435.
  • B. D. Gu and T. H. He, “Investigation of thermoelastic wave propagation in Euler–Bernoulli beam via nonlocal strain gradient elasticity and G-N theory,” J. Vib. Eng. Technol., vol. 55, pp. 715–724, 2021. DOI: 10.1007/s42417-020-00277-4.
  • Q. Lyu, N. H. Zhang, C. Y. Zhang, J. Z. Wu, and Y. C. Zhang, “Effect of adsorbate viscoelasticity on dynamical responses of laminated microcantilever resonators,” Compos. Struct., vol. 250, no. 15, pp. 112553, 2020. DOI: 10.1016/j.compstruct.2020.112553.
  • W. Peng, L. K. Chen, and T. H. He, “Nonlocal thermoelastic analysis of a functionally graded material microbeam,” Appl. Math. Mech.-Engl. Ed., vol. 42, no. 6, pp. 855–870, 2021. DOI: 10.1007/s10483-021-2742-9.
  • Q. Lyu, J. J. Li, and N. H. Zhang, “Quasi-static and dynamical analyses of a thermoviscoelastic Timoshenko beam using the differential quadrature method,” Appl. Math. Mech.-Engl. Ed., vol. 40, no. 4, pp. 549–562, 2019. DOI: 10.1007/s10483-019-2470-8.
  • B. A. Hamidi, S. A. Hosseini, R. Hassannejad, and F. Khosravi, “Theoretical analysis of thermoelastic damping of silver nanobeam resonators based on Green–Naghdi via nonlocal elasticity with surface energy effects,” Euro. Phys. J. Plus, vol. 135, no. 1, pp. 35, 2020. DOI: 10.1140/epjp/s13360-019-00037-8.
  • H. M. Youssef and N. A. Alghamdi, “Modeling of one-dimensional thermoelastic dual-phase-lag skin tissue subjected to different types of thermal loading,” Sci. Rep., vol. 10, no. 1, pp. 3399, 2020. DOI: 10.1038/s41598-020-60342-6.
  • S. Q. He, W. Peng, Y. B. Ma, and T. H. He, “Investigation on the transient response of a porous half-space with strain and thermal relaxations,” Eur. J. Mech. Solid, vol. 84, pp. 104064, 2020. DOI: 10.1016/j.euromechsol.2020.104064.
  • V. Borjalilou, M. Asghari, and E. Taati, “Thermoelastic damping in nonlocal nanobeams considering dual-phase-lagging effect,” J. Vib. Control, pp. 1–12, 2020. DOI: 10.1177/1077546319891334.
  • B. Mohammad and K. M. Ardeshir, “Thermoelastic damping in microbeam resonators based on modified strain gradient elasticity and generalized thermoelasticity theories,” Acta Mech. Sin., vol. 229, no. 1, pp. 173–192, 2018. DOI: 10.1007/s00707-017-1950-0.
  • V. Borjalilou, M. Asghari, and E. Bagheri, “Small-scale thermoelastic damping in micro-beams utilizing the modified couple stress theory and the dual-phase-lag heat conduction model,” J. Therm. Stresses, vol. 42, no. 7, pp. 801–814, 2019. DOI: 10.1080/01495739.2019.1590168.
  • S. H. Shi, T. H. He, and F. Jin, “Thermoelastic damping analysis of size-dependent nano-resonators considering dual-phase-lag heat conduction model and surface effect,” Int. J. Heat Mass Transfer, vol. 170, pp. 120977, 2021. DOI: 10.1016/j.ijheatmasstransfer.2021.120977.
  • G. B. Zhao, S. H. Shi, B. D. Gu, and T. H. He, “Thermoelastic damping analysis to nano-resonators utilizing the modified couple stress theory and the memory-dependent heat conduction model,” J. Vib. Eng. Technol., vol. 10, pp. 715–726, 2021. DOI: 10.1007/s42417-021-00401-y.
  • W. Deng, L. Li, Y. Hu, X. Wang, and X. Li, “Thermoelastic damping of graphene nanobeams by considering the size effects of nanostructure and heat conduction,” J. Therm. Stresses, vol. 41, no. 9, pp. 1182–1200, 2018. DOI: 10.1080/01495739.2018.1466669.
  • B. D. Gu, T. H. He, and Y. B. Ma, “Thermoelastic damping analysis in micro-beam resonators considering nonlocal strain gradient based on dual-phase-lag model,” Int. J. Heat Mass Transfer, vol. 180, pp. 121771, 2021. DOI: 10.1016/j.ijheatmasstransfer.2021.121771.
  • H. Y. Zhou and P. Li, “Dual-phase-lagging thermoelastic damping and frequency shift of micro/nano-ring resonators with rectangular cross-section,” Struct. Eng. Mech., vol. 159, pp. 107309, 2021. DOI: 10.1016/j.tws.2020.107309.
  • I. Kaur, P. Lata, and K. Singh, “Thermoelastic damping in generalized simply supported piezo-thermo-elastic nanobeam,” Struct. Eng. Mech., vol. 81, no. 1, pp. 29–37, 2022. DOI: 10.1142/S1758825119500698.
  • R. B. Hetnarski and M. R. Eslami, Thermal stresses-advanced theory and applications. Cham: Springer, 2019.
  • G. F. Wang and X. Q. Feng, “Timoshenko beam model for buckling and vibration of nanowires with surface effects,” J. Phys. D: Appl. Phys., vol. 42, no. 15, pp. 155411, 2009. DOI: 10.1088/0022-3727/42/15/155411.
  • R. Ansari and S. Sahmani, “Small scale effect on vibrational response of single-walled carbon nanotubes with different boundary conditions based on nonlocal beam models,” Commun. Nonlinear Sci., vol. 17, no. 4, pp. 1965–1979, 2012. DOI: 10.1016/j.cnsns.2011.08.043.
  • J. N. Reddy and S. D. Pang, “Nonlocal continuum theories of beams for the analysis of carbon nanotubes,” J. Phys. D Appl. Phys., vol. 103, no. 2, pp. 023511, 2008. DOI: 10.1063/1.2833431.
  • L. Li and Y. J. Hu, “Nonlinear bending and free vibration analyses of nonlocal strain gradient beams made of functionally graded material,” Int. J. Eng. Sci., vol. 107, pp. 77–97, 2016. DOI: 10.1016/j.ijengsci.2016.07.011.
  • M. Chester, “Second sound in solids,” Phys. Rev., vol. 131, no. 5, pp. 2013–2015, 1963. DOI: 10.1103/PhysRev.131.2013.
  • F. L. Guo, W. J. Jiao, G. Q. Wang, and Z. Q. Chen, “Distinctive features of thermoelastic dissipation in microbeam resonators at nanoscale,” J. Therm. Stresses, vol. 39, no. 3, pp. 360–369, 2016. DOI: 10.1080/01495739.2015.1125653.
  • F. L. Guo, “Thermo-elastic dissipation of microbeam resonators in the framework of generalized thermo-elasticity theory,” J. Therm. Stresses, vol. 36, no. 11, pp. 1156–1168, 2013. DOI: 10.1080/01495739.2013.818903.
  • V. Borjalilou and M. Asghari, “Size-dependent strain gradient-based thermoelastic damping in micro-beams utilizing a generalized thermoelasticity theory,” Int. J. Appl. Mech., vol. 11, no. 01, pp. 1950007, 2019. DOI: 10.1142/S1758825119500078.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.