276
Views
0
CrossRef citations to date
0
Altmetric
Articles

Substrate design-based control of the residual distortion in directed energy deposition additive manufacturing

, ORCID Icon, , , &
Pages 22-42 | Received 25 Apr 2022, Accepted 03 Sep 2022, Published online: 21 Oct 2022

References

  • C. Greer, et al., “Introduction to the design rules for metal big area additive manufacturing,” Addit. Manuf., vol. 27, pp. 159–166, 2019. DOI: 10.1016/j.addma.2019.02.016.
  • J. Savolainen and M. Collan, “How additive manufacturing technology changes business models? - Review of literature,” Addit. Manuf., vol. 32, pp. 101070, 2020. DOI: 10.1016/j.addma.2020.101070.
  • M. Chiumenti, X. Lin, M. Cervera, W. Lei, Y. X. Zheng and W. D. Huang, “Numerical simulation and experimental calibration of additive manufacturing by blown powder technology. Part I: Thermal analysis,” RPJ, vol. 23, no. 2, pp. 448–463, 2017. DOI: 10.1108/RPJ-10-2015-0136.
  • I. Yadroitsev, P. Krakhmalev and I. Yadroitsava, “Selective laser melting of Ti6Al4V alloy for biomedical applications: Temperature monitoring and microstructural evolution,” J. Alloys Compd., vol. 583, pp. 404–409, 2014. DOI: 10.1016/j.jallcom.2013.08.183.
  • J. V. Gordon, et al., “Method for rapid modeling of distortion in laser powder bed fusion metal additive manufacturing parts,” J. Mater. Eng. Perform., vol. 30, no. 12, pp. 8735–8745, 2021. DOI: 10.1007/s11665-021-06180-7.
  • Y. Zhang and J. Zhang, “Finite element simulation and experimental validation of distortion and cracking failure phenomena in direct metal laser sintering fabricated component,” Addit. Manuf., vol. 16, pp. 49–57, 2017. DOI: 10.1016/j.addma.2017.05.002.
  • A. Yaghi, S. Ayvar-Soberanis, S. Moturu, R. Bilkhu and S. Afazov, “Design against distortion for additive manufacturing,” Addit. Manuf., vol. 27, pp. 224–235, 2019. DOI: 10.1016/j.addma.2019.03.010.
  • E. R. Denlinger and P. Michaleris, “Mitigation of distortion in large additive manufacturing parts,” Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., vol. 231, no. 6, pp. 983–993, 2017. DOI: 10.1177/0954405415578580.
  • R. S. Xie, et al., “In-situ observation and numerical simulation on the transient strain and distortion prediction during additive manufacturing,” J. Manuf. Processes, vol. 38, pp. 494–501, 2019. DOI: 10.1016/j.jmapro.2019.01.049.
  • T. Mukherjee, V. Manvatkar, A. De and T. DebRoy, “Mitigation of thermal distortion during additive manufacturing,” Scr. Mater., vol. 127, pp. 79–83, 2017. DOI: 10.1016/j.scriptamat.2016.09.001.
  • N. C. Levkulich, S. L. Semiatin, J. E. Gockel, J. R. Middendorf, A. T. DeWald and N. W. Klingbeil, “The effect of process parameters on residual stress evolution and distortion in the laser powder bed fusion of Ti-6Al-4V,” Addit. Manuf., vol. 28, pp. 475–484, 2019. DOI: 10.1016/j.addma.2019.05.015.
  • E. R. Denlinger and P. Michaleris, “Effect of stress relaxation on distortion in additive manufacturingprocess modeling,” Addit. Manuf., vol. 12, pp. 51–59, 2016. DOI: 10.1016/j.addma.2016.06.011.
  • M. Biegler, A. Marko, B. Graf and M. Rethmeier, “Finite element analysis of in-situ distortion and bulging for an arbitrarily curved additive manufacturing directed energy deposition geometry,” Addit. Manuf., vol. 24, pp. 264–272, 2018. DOI: 10.1016/j.addma.2018.10.006.
  • X. F. Lu, et al., “Residual stress and distortion of rectangular and S-shaped Ti-6Al-4V parts by directed energy deposition: Modelling and experimental calibration,” Addit. Manuf., vol. 26, pp. 166–179, 2019. DOI: 10.1016/j.addma.2019.02.001.
  • S. Gao, Z. J. Tan, L. Lan and B. He, “Effects of geometrical size and structural feature on the shape-distortion behavior of hollow Ti-alloy blade fabricated by additive manufacturing process,” J. Laser Appl., vol. 32, no. 3, pp. 032005, 2020. DOI: 10.2351/7.0000034.
  • P. X. He, C. Sun and Y. Wang, “Material distortion in laser-based additive manufacturing of fuel cell component: Three-dimensional numerical analysis,” Addit. Manuf., vol. 46, pp. 102188, 2021. DOI: 10.1016/j.addma.2021.102188.
  • Q. R. Wu, T. Mukherjee, C. M. Liu, J. P. Lu and T. DebRoy, “Residual stresses and distortion in the patterned printing of titanium and nickel alloys,” Addit. Manuf., vol. 29, pp. 100808, 2019. DOI: 10.1016/j.addma.2019.100808.
  • J. Lee and H. Chuang, “Experimental investigation of deposition pattern on the temperature and distortion of direct energy deposition-based additive manufactured part,” Appl. Sci., vol. 10, no. 21, pp. 7653, 2020. DOI: 10.3390/app10217653.
  • Z. Zhang, P. Ge, J. Y. Li, Y. F. Wang, X. Gao and X. X. Yao, “Laser–particle interaction-based analysis of powder particle effects on temperatures and distortions in directed energy deposition additive manufacturing,” J. Thermal Stresses, vol. 44, no. 9, pp. 1068–1095, 2021. DOI: 10.1080/01495739.2021.1954572.
  • H. L. Wei, et al., “Mechanistic models for additive manufacturing of metallic components,” Progress Mater. Sci., vol. 116, pp. 100703, 2021. DOI: 10.1016/j.pmatsci.2020.100703.
  • R. W. Messler, Jr. Principles of Welding: Processes, Physics, Chemistry, and Metallurgy. Hoboken, NJ: John Wiley & Sons, 2008.
  • J. Cao, M. A. Gharghouri and P. Nash, “Finite-element analysis and experimental validation of thermal residual stress and distortion in electron beam additive manufactured Ti-6Al-4V build plates,” J. Mate. Process. Technol., vol. 237, pp. 409–419, 2016. DOI: 10.1016/j.jmatprotec.2016.06.032.
  • S. Marimuthu, et al., “Finite element modelling of substrate thermal distortion in direct laser additive manufacture of an aero-engine component,” Proc. Institution Mech. Engineers, Part C: J. Mech. Eng. Sci., vol. 227, no. 9, pp. 1987–1999, 2013. DOI: 10.1177/0954406212470363.
  • T. Mukherjee, H. L. Wei, A. De and T. DebRoy, “Heat and fluid flow in additive manufacturing – Part II: Powder bed fusion of stainless steel, and titanium, nickel and aluminum base alloys,” Comput. Mater. Sci., vol. 150, pp. 369–380, 2018. DOI: 10.1016/j.commatsci.2018.04.027.
  • Y. S. Huo, C. Hong, H. X. Li and P. Liu, “Influence of different Processing Parameter on distortion and Residual Stress of Inconel 718 Alloys Fabricated by Selective Laser Melting (SLM),” Mat. Res., vol. 23, no. 6, pp. e20200176, 2020. DOI: 10.1590/1980-5373-mr-2020-0176.
  • H. J. Gong, K. Rafi, H. F. Gu, T. Starr and B. Stucker, “Analysis of defect generation in Ti-6Al-4V parts made using powder bed fusion additive manufacturing processes,” Addit. Manuf., vol. 1-4, pp. 87–98, 2014. DOI: 10.1016/j.addma.2014.08.002.
  • A. Raghavan, H. L. Wei, T. A. Palmer and T. DebRoy, “Heat transfer and fluid flow in additive manufacturing,” J. Laser Appl., vol. 25, no. 5, pp. 052006, 2013. DOI: 10.2351/1.4817788.
  • Z. Q. Wang, A. D. Stoica, D. Ma and A. M. Beese, “Stress relaxation behavior and mechanisms in Ti-6Al-4V determined via in situ neutron diffraction: Application to additive manufacturing,” Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process., vol. 707, pp. 585–592, 2017. DOI: 10.1016/j.msea.2017.09.071.
  • D. J. Corbin, A. R. Nassar, E. W. Reutzel, A. M. Beese and P. Michaleris, “Effect of substrate thickness and preheating on the distortion of laser deposited Ti-6Al-4V,” J. Manuf. Sci. Eng., vol. 140, no. 6, pp. 061009, 2018. DOI: 10.1115/1.4038890.
  • H. Parkus. Thermoelasticity. New York: Springer-Verlag, 1976.
  • X. R. Zhao, A. Iyer, P. Promoppatum and S. C. Yao, “Numerical modeling of the thermal behavior and residual stress in the direct metal laser sintering process of titanium alloy products,” Addit. Manuf., vol. 14, pp. 126–136, 2017. DOI: 10.1016/j.addma.2016.10.005.
  • H. Huang, N. S. Ma, J. Chen, Z. L. Feng and H. Murakawa, “Toward large-scale simulation of residual stress and distortion in wire and arc additive manufacturing,” Addit. Manuf., vol. 34, pp. 101248, 2020. DOI: 10.1016/j.addma.2020.101248.
  • Z. Zhang, et al., “Electromagnetic wave-based analysis of laser-particle interactions in directed energy deposition additive manufacturing,” Addit. Manuf., vol. 34, pp. 101284, 2020. DOI: 10.1016/j.addma.2020.101284.
  • E. Kundakcıoğlu, I. Lazoglu, Ö. Poyraz, E. Yasa and N. Cizicioğlu, “Thermal and molten pool model in selective laser melting process of Inconel 625,” Int. J. Adv. Manuf. Technol., vol. 95, no. 9-12, pp. 3977–3984, 2018. DOI: 10.1007/s00170-017-1489-1.
  • A. Anca, V. D. Fachinotti, G. Escobar-Palafox and A. Cardona, “Computational modelling of shaped metal deposition,” Int. J. Numer. Meth. Eng., vol. 85, no. 1, pp. 84–106, 2011. DOI: 10.1002/nme.2959.
  • Z. D. Zhang, et al., “3-Dimensional heat transfer modeling for laser powder-bed fusion additive manufacturing with volumetric heat sources based on varied thermal conductivity and absorptivity,” Optics Laser Technol., vol. 109, pp. 297–312, 2019. DOI: 10.1016/j.optlastec.2018.08.012.
  • R. S. Li, et al., “Effect of path strategy on residual stress and distortion in laser and cold metal transfer hybrid additive manufacturing,” Addit. Manuf., vol. 46, pp. 102203, 2021. DOI: 10.1016/j.addma.2021.102203.
  • O. C. Zienkiewicz, S. Valliappan and I. P. King, “Elasto-plastic solutions of engineering problems 'initial stress’, finite element approach,” Int. J. Numer. Meth. Eng., vol. 1, no. 1, pp. 75–100, 1969. DOI: 10.1002/nme.1620010107.
  • X. F. Lu, et al., “Substrate design to minimize residual stresses in directed energy deposition AM processed,” Mater. Des., vol. 202, pp. 109525, 2021. DOI: 10.1016/j.matdes.2021.109525.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.