137
Views
1
CrossRef citations to date
0
Altmetric
Articles

The analysis and validation of natural frequencies and mode shapes of 3D plates in the framework of the generalized thermoelastic theory

, & ORCID Icon
Pages 43-58 | Received 02 May 2022, Accepted 01 Sep 2022, Published online: 11 Nov 2022

References

  • N. V. Vuong and C. H. Lee, “Quasi-3D isogeometric buckling analysis method for advanced composite plates in thermal environments,” Aerosp. Sci. Technol., vol. 92, pp. 34–54, 2019. DOI: 10.1016/j.ast.2019.05.056.
  • W. Yu, X. Wang, and X. Huang, “Dynamic modelling of heat transfer in thermal-acoustic fatigue tests,” Aerosp. Sci. Technol., vol. 71, pp. 675–684, 2017. DOI: 10.1016/j.ast.2017.10.025.
  • T. M. Tu, T. H. Quoc, and L. N. Van, “Vibration analysis of functionally graded plates using the eight-unknown higher order shear deformation theory in thermal environments,” Aerosp. Sci. Technol., vol. 84, pp. 698–711, 2019. DOI: 10.1016/j.ast.2018.11.010.
  • W. Zhang, R. Q. Wu, and K. Behdinan, “Nonlinear dynamic analysis near resonance of a beam-ring structure for modelling circular truss antenna under time-dependent thermal excitation,” Aerosp. Sci. Technol., vol. 86, pp. 296–311, 2019. DOI: 10.1016/j.ast.2019.01.018.
  • A. E. Abouelregal and R. Tiwari, “The thermoelastic vibration of nano-sized rotating beams with variable thermal properties under axial load via memory-dependent heat conduction,” Meccanica, vol. 57, no. 8, pp. 2001–2025, 2022. DOI: 10.1007/s11012-022-01543-3.
  • H. W. Lord and Y. Shulman, “A generalized dynamical theory of thermoelasticity,” J. Mech. Phys. Solids, vol. 15, no. 5, pp. 299–309, 1967. DOI: 10.1016/0022-5096(67)90024-5.
  • A. E. Green and K. A. Lindsay, “Thermoelasticity,” J. Elasticity, vol. 2, no. 1, pp. 1–7, 1972. DOI: 10.1007/BF00045689.
  • A. E. Green and P. M. Naghdi, “Thermoelasticity without energy dissipation,” J. Elasticity, vol. 31, no. 3, pp. 189–208, 1993. DOI: 10.1007/BF00044969.
  • P. Pal and M. Kanoria, “Thermo-elastic wave propagation in a transversely isotropic thick plate under Greena Naghdi theory due to gravitational field,” J. Therm. Stresses, vol. 40, no. 4, pp. 470–485, 2017. DOI: 10.1080/01495739.2016.1253438.
  • K. L. Verma, “Thermo-elastic waves in anisotropic plates using normal mode expansion method with thermal relaxation time,” Int. J. Mech. Syst. Sci. Eng., vol. 2, no. 2, pp. 86–93, 2013.
  • K. L. Verma, “Thermo-elastic wave propagation in laminated composites plates,” Appl. Comput. Mech., vol. 6, no. 2, pp. 197–208, 2012.
  • S. M. Hsu and C. C. Yin, “Numerical study of characteristic equations of thermo-elastic waves propagating in a uniaxial pre-stressed isotropic plate,” Isrn Appl. Math., vol. 2011, pp. 532–547, 2013.
  • M. D. Sharma, “Propagation and attenuation of Rayleigh waves in generalized thermo-elastic media,” J. Seismol., vol. 18, no. 1, pp. 61–79, 2014. DOI: 10.1007/s10950-013-9401-4.
  • F. Bayones, A. Abd-Alla, R. Alfatta, and H. Al-Nefaie, “Propagation of thermoelastic wave in a half-space of a homogeneous isotropic material subjected to the effect of rotation and initial stress,” Comput. Mater. Contin., vol. 62, no. 2, pp. 551–567, 2020. DOI: 10.32604/cmc.2020.08420.
  • A. E. N. Abd-Alla and A. Al-Dawy, “Thermal relaxation times effect on Rayleigh waves in Generalized Thermoelastic Media,” J. Therm. Stress., vol. 24, pp. 367–382, 2001.
  • M. Marin, M. I. A. Othman, and I. A. Abbas, “An extension of the domain of influence theorem for generalized thermoelasticity of anisotropic material with voids,” J. Comput. Theor. Nanosci., vol. 12, no. 8, pp. 1594–1598, 2015. DOI: 10.1166/jctn.2015.3934.
  • I. A. Abbas, A. Abdalla, F. S. Alzahrani, and M. Spagnuolo, “Wave propagation in a generalized thermo-elastic plate using eigenvalue approach,” J. Therm. Stress., vol. 39, no. 11, pp. 1367–1377, 2016. DOI: 10.1080/01495739.2016.1218229.
  • M. I. A. Othman and E. E. M. Eraki, “Effect of gravity on generalized thermoelastic diffusion due to laser pulse using dual-phase-lag model,” MMMS., vol. 14, no. 3, pp. 457–481, 2018. DOI: 10.1108/MMMS-08-2017-0087.
  • V. Borjalilou and M. Asghari, “Size-dependent strain gradient-based thermoelastic damping in micro-beams utilizing a generalized thermoelasticity theory,” Int. J. Appl. Mech., vol. 11, no. 01, pp. 1950007, 2019. DOI: 10.1142/S1758825119500078.
  • V. Borjalilou and M. Asghari, “Thermoelastic damping in strain gradient microplates according to a generalized theory of thermoelasticity,” J. Therm. Stress., vol. 43, no. 4, pp. 401–420, 2020. DOI: 10.1080/01495739.2020.1722771.
  • J. Alihemmati, Y. T. Beni, and Y. Kiani, “Application of Chebyshev collocation method to unified generalized thermoelasticity of a finite domain,” J. Therm. Stress., vol. 44, no. 5, pp. 547–565, 2021. DOI: 10.1080/01495739.2020.1867941.
  • B. Zhang, L. J. Li, J. G. Yu, and L. Elmaimouni, “Generalized thermo-elastic waves propagating in bars with a rectangular cross-section,” Arch. Appl. Mech., vol. 92, no. 3, pp. 785–799, 2022. DOI: 10.1007/s00419-021-02072-3.
  • M. Li, Y. Cai, R. Fan, H. Wang, and V. Borjalilou, “Generalized thermoelasticity model for thermoelastic damping in asymmetric vibrations of nonlocal tubular shells,” Thin-Walled Struct., vol. 174, pp. 109142, 2022. DOI: 10.1016/j.tws.2022.109142.
  • R. Tiwari and A. E. Abouelregal, “Memory response on magneto-thermoelastic vibrations on a viscoelastic micro-beam exposed to a laser pulse heat source,” Appl. Math. Model., vol. 99, pp. 328–345, 2021. DOI: 10.1016/j.apm.2021.06.033.
  • R. Tiwari, “Magneto-thermoelastic interactions in generalized thermoelastic half-space for varying thermal and electrical conductivity,” Waves Random Complex Media, pp. 1–17, 2021. DOI: 10.1080/17455030.2021.1948146.
  • R. Tiwari, J. C. Misra, and R. Prasad, “Magneto-thermoelastic wave propagation in a finitely conducting medium: a comparative study for three types of thermoelasticity I, II, and III,” J. Therm. Stress., vol. 44, no. 7, pp. 785–806, 2021. DOI: 10.1080/01495739.2021.1918594.
  • D. Zhou, Y. K. Cheung, F. T. K. Au, and S. H. Lo, “Three-dimensional vibration analysis of thick rectangular plates using Chebyshev polynomial and Ritz method,” Int. J. Solids Struct., vol. 39, no. 26, pp. 6339–6353, 2002. DOI: 10.1016/S0020-7683(02)00460-2.
  • S. Aydinlik and A. Kiris, “Fractional calculus approach to nonlocal three-dimensional vibration analysis of plates,” AIAA J., vol. 58, no. 1, pp. 355–361, 2020. DOI: 10.2514/1.J058629.
  • A. Kiris and E. İnan, “3-D vibration analysis of the rectangular micro damaged plates,” Springer Proc. Phys., vol. 126, pp. 207–214, 2008.
  • S. Aydinlik, A. Kiris, and W. Sumelka, “Nonlocal vibration analysis of microstretch plates in the framework of space-fractional mechanics—theory and validation,” Eur. Phys. J. Plus, vol. 136, no. 2, pp. 169, 2021. DOI: 10.1140/epjp/s13360-021-01110-x.
  • S. Aydinlik, A. Kiris, and W. Sumelka, “Three-dimensional analysis of nonlocal plate vibration in the framework of space-fractional mechanics—theory and validation,” Thin-Walled Struct., vol. 163, pp. 107645, 2021. DOI: 10.1016/j.tws.2021.107645.
  • H. T. Synder and M. W. Kehoe, Determination of the Effects of Heating on Modal Characteristics of an Aluminum Plate with Application to Hypersonic Vehicles. NASA, 1991.
  • D. J. Godfrey, “The use of ceramics for engines,” Mater. Des., vol. 4, no. 3, pp. 759–765, 1983. DOI: 10.1016/0261-3069(83)90199-1.
  • J. N. Sharma, D. Singh, and R. Kumar, “Generalized thermo-elastic waves in homogeneous isotropic plates,” J. Acoust. Soc. Am., vol. 108, no. 2, pp. 848–851, 2000. DOI: 10.1121/1.429619.
  • R. Lifshitz and M. L. Roukes, “Thermoelastic damping in micro- and nanomechanical systems,” Phys. Rev. B, vol. 61, no. 8, pp. 5600–5609, 2000. DOI: 10.1103/PhysRevB.61.5600.
  • C. M. Twinkle, J. Pitchaimani, and V. Rajamohan, “Free vibration modes of rectangular plate under non-uniform heating: an experimental investigation,” Structures, vol. 28, pp. 1802–1817, 2020.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.