1,022
Views
5
CrossRef citations to date
0
Altmetric
Articles

Thermoelastic stresses alleviation for two-dimensional functionally graded cylinders under asymmetric loading

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 59-74 | Received 19 Jul 2022, Accepted 07 Nov 2022, Published online: 06 Dec 2022

References

  • P. H. Cong, et al., “Nonlinear thermomechanical buckling and post-buckling response of porous FGM plates using Reddy’s HSDT,” Aerosp. Sci. Technol., vol. 77, pp. 419–428, 2018. DOI: 10.1016/j.ast.2018.03.020.
  • D. Kouider, et al., “An original four-variable quasi-3D shear deformation theory for the static and free vibration analysis of new type of sandwich plates with both FG face sheets and FGM hard core,” Steel Compos. Struct., vol. 41, no. 2, pp. 167–191, 2021. DOI: 10.12989/scs.2021.41.2.167.
  • L. Guo, et al., “The interface crack problem for a functionally graded coating-substrate structure with general coating properties,” Int. J. Solids Struct., vol. 146, pp. 136–153, 2018. DOI: 10.1016/j.ijsolstr.2018.03.025.
  • S. Huang, et al., “The interface crack problem under steady heat flux for a functionally graded coating-substrate structure with general coating properties,” Theor. Appl. Fract. Mech., vol. 109, pp. 102675, 2020. DOI: 10.1016/j.tafmec.2020.102675.
  • M. Jabbari, M. Meshkini, and M. R. Eslami, “Mechanical and thermal stresses in FGPPM hollow cylinder due to radially symmetric loads,” J. Pressure Vessel Technol., vol. 138, no. 1, pp. 2938–2946, 2016. DOI: 10.1115/1.4031372.
  • M. Jabbari, M. Meshkini, and M. R. Eslami, “Nonaxisymmetric mechanical and thermal stresses in FGPPM hollow cylinder,” J. Pressure Vessel Technol., vol. 134, no. 6, pp. 1–25, 2012. DOI: 10.1115/1.4007034.
  • J. Jafari Fesharaki, et al., “Two-dimensional solution for electro-mechanical behavior of functionally graded piezoelectric hollow cylinder,” Appl. Math. Model., vol. 36, no. 11, pp. 5521–5533, 2012. DOI: 10.1016/j.apm.2012.01.019.
  • Y. V. Tokovyy and C.-C. Ma, “Analytical solutions to the planar non-axisymmetric elasticity and thermoelasticity problems for homogeneous and inhomogeneous annular domains,” Int. J. Eng. Sci., vol. 47, no. 3, pp. 413–437, 2009. DOI: 10.1016/j.ijengsci.2008.10.005.
  • R. C. Batra and G. J. Nie, “Analytical solutions for functionally graded incompressible eccentric and non-axisymmetrically loaded circular cylinders,” Compos. Struct., vol. 92, no. 5, pp. 1229–1245, 2010. DOI: 10.1016/j.compstruct.2009.10.022.
  • A. Loghman, M. Nasr, and M. Arefi, “Nonsymmetric thermomechanical analysis of a functionally graded cylinder subjected to mechanical, thermal, and magnetic loads,” J. Therm. Stresses, vol. 40, no. 6, pp. 765–782, 2017. DOI: 10.1080/01495739.2017.1280380.
  • A. M. Eldeeb, Y. M. Shabana, and A. Elsawaf, “Investigation of the thermoelastoplastic behaviors of multilayer FGM cylinders,” Compos. Struct., vol. 276, pp. 114523, 2021. DOI: 10.1016/j.compstruct.2021.114523.
  • M. Hosseini, M. Shishesaz, and A. Hadi, “Thermoelastic analysis of rotating functionally graded micro/nanodisks of variable thickness,” Thin-Walled Struct., vol. 134, pp. 508–523, 2019. DOI: 10.1016/j.tws.2018.10.030.
  • P. Nayak, S. Bhowmick, and K. N. Saha, “Elasto-plastic analysis of thermo-mechanically loaded functionally graded disks by an iterative variational method,” Eng. Sci. Technol. Int. J., vol. 23, no. 1, pp. 42–64, 2020. DOI: 10.1016/j.jestch.2019.04.007.
  • A. M. Eldeeb, Y. M. Shabana, and A. Elsawaf, “Influences of angular deceleration on the thermoelastoplastic behaviors of nonuniform thickness multilayer FGM discs,” Compos. Struct., vol. 258, pp. 113092, 2021. DOI: 10.1016/j.compstruct.2020.113092.
  • A. M. Eldeeb, Y. M. Shabana, and A. Elsawaf, “Thermo-elastoplastic behavior of a rotating sandwich disc made of temperature-dependent functionally graded materials,” J. Sandwich Struct. Mater., vol. 23, no. 5, pp. 1761–1783, 2021. DOI: 10.1177/1099636220904970.
  • Y. M. Shabana and A. Elsawaf, “Nonlinear multi-variable optimization of layered composites with nontraditional interfaces,” Struct. Multidisc. Optim., vol. 52, no. 5, pp. 991–1000, 2015. DOI: 10.1007/s00158-015-1292-2.
  • Y. M. Shabana, et al., “Stresses minimization in functionally graded cylinders using particle swarm optimization technique,” Int. J. Pressure Vessels Piping, vol. 154, pp. 1–10, 2017. DOI: 10.1016/j.ijpvp.2017.05.013.
  • A. M. Eldeeb, Y. M. Shabana, and A. Elsawaf, “Particle swarm optimization for the thermoelastic behaviors of functionally graded rotating nonuniform thickness sandwich discs,” Arab. J. Sci. Eng., pp. 1–13, 2022. DOI: 10.1007/s13369-022-07351-x.
  • S. Zhou and Q. Li, “Microstructural design of connective base cells for functionally graded materials,” Mater. Lett., vol. 62, no. 24, pp. 4022–4024, 2008. DOI: 10.1016/j.matlet.2008.05.058.
  • Y. Su, et al., “Influence of composition gradient variation on the microstructure and mechanical properties of 316 L/Inconel718 functionally graded material fabricated by laser additive manufacturing,” J. Mater. Process. Technol., vol. 283, pp. 116702, 2020. DOI: 10.1016/j.jmatprotec.2020.116702.
  • Nemat-Alla, M. K. I. E. Ahmed, and I. Hassab-Allah, “Elastic–plastic analysis of two-dimensional functionally graded materials under thermal loading,” Int. J. Solids Struct., vol. 46, no. 14–15, pp. 2774–2786, 2009. DOI: 10.1016/j.ijsolstr.2009.03.008.
  • X.-Y. Miao, et al., “Free vibration analysis of three-layer thin cylindrical shell with variable thickness two-dimensional FGM middle layer under arbitrary boundary conditions,” J. Sandwich Struct. Mater., vol. 24, no. 2, pp. 973–1003, 2022. DOI: 10.1177/10996362211020429.
  • M. Nemat-Alla, “Reduction of thermal stresses by developing two-dimensional functionally graded materials,” Int. J. Solids Struct., vol. 40, no. 26, pp. 7339–7356, 2003. DOI: 10.1016/j.ijsolstr.2003.08.017.
  • N. T. Hong, “Nonlinear static bending and free vibration analysis of bidirectional functionally graded material plates,” Int. J. Aerosp. Eng., vol. 2020, pp. 1–16, 2020. DOI: 10.1155/2020/8831366.
  • M. Nemat-Alla, “Reduction of thermal stresses by composition optimization of two-dimensional functionally graded materials,” Acta Mech., vol. 208, no. 3–4, pp. 147–161, 2009. DOI: 10.1007/s00707-008-0136-1.
  • A. Najibi and M. H. Shojaeefard, “Elastic mechanical stress analysis in a 2D-FGM thick finite length hollow cylinder with newly developed material model,” Acta Mech. Solida Sin., vol. 29, no. 2, pp. 178–191, 2016. DOI: 10.1016/S0894-9166(16)30106-9.
  • A. Najibi, “Mechanical stress reduction in a pressurized 2D-FGM thick hollow cylinder with finite length,” Int. J. Pressure Vessels Piping, vol. 153, pp. 32–44, 2017. DOI: 10.1016/j.ijpvp.2017.05.007.
  • A. Najibi and R. Talebitooti, “Nonlinear transient thermo-elastic analysis of a 2D-FGM thick hollow finite length cylinder,” Compos. Part B: Eng., vol. 111, pp. 211–227, 2017. DOI: 10.1016/j.compositesb.2016.11.055.
  • Moussavinezhad, S. M. F. Shahabian, S and M. Hosseini, “Two-dimensional stress-wave propagation in finite-length FG cylinders with two-directional nonlinear grading patterns using the MLPG method,” J. Eng. Mech., vol. 140, no. 3, pp. 575–592, 2014. DOI: 10.1061/(ASCE)EM.1943-7889.0000678.
  • A. Salehi and I. Ahmadi, “Transient thermal and mechanical stress analysis of 2D-functionally graded finite cylinder: A truly meshless formulation,” Iran J. Sci. Technol. Trans. Mech. Eng., vol. 46, no. 3, pp. 573–598, 2022. DOI: 10.1007/s40997-021-00432-6.
  • M. Meshkini, et al., “Asymmetric mechanical and thermal stresses in 2D-FGPPMs hollow cylinder,” J. Therm. Stresses, vol. 40, no. 4, pp. 448–469, 2017. DOI: 10.1080/01495739.2016.1249987.
  • A. Najibi and G. Jing, “Two dimensional stress wave propagation analysis of infinite 2D-FGM hollow cylinder,” Waves Random Complex Media, pp. 1–18, 2021. DOI: 10.1080/17455030.2021.1987584.
  • M. Saadatfar and M. H. Zarandi, “Effect of angular acceleration on the mechanical behavior of an exponentially graded piezoelectric rotating annular plate with variable thickness,” Mech. Based Des. Struct. Mach., vol. 50, no. 4, pp. 1354–1370, 2022. DOI: 10.1080/15397734.2020.1751198.
  • V. Vullo and F. Vivio, Rotors: Stress Analysis and Design. New York: Springer Science & Business Media, 2013.
  • J. N. Reddy and D. K. Gartling, The Finite Element Method in Heat Transfer and Fluid Dynamics. Boca Raton: CRC press, 2010.
  • A. J. M. Ferreira and N. Fantuzzi, Plane Stress, in MATLAB Codes for Finite Element Analysis: Solids and Structures. Cham: Springer International Publishing, 2020, pp. 171–205.
  • H. Li and Y. Liu, “Functionally graded hollow cylinders with arbitrary varying material properties under nonaxisymmetric loads,” Mech. Res. Commun., vol. 55, pp. 1–9, 2014. DOI: 10.1016/j.mechrescom.2013.10.011.
  • S. H. Kordkheili and R. Naghdabadi, “Thermoelastic analysis of a functionally graded rotating disk,” Compos. Struct., vol. 79, no. 4, pp. 508–516, 2007. DOI: 10.1016/j.compstruct.2006.02.010.
  • N. Tutuncu and B. Temel, “A novel approach to stress analysis of pressurized FGM cylinders, disks and spheres,” Compos. Struct., vol. 91, no. 3, pp. 385–390, 2009. DOI: 10.1016/j.compstruct.2009.06.009.
  • A. Hassani, et al., “Semi-exact elastic solutions for thermo-mechanical analysis of functionally graded rotating disks,” Compos. Struct., vol. 93, no. 12, pp. 3239–3251, 2011. DOI: 10.1016/j.compstruct.2011.06.001.
  • A. Hassani, et al., “Semi-exact solution for thermo-mechanical analysis of functionally graded elastic-strain hardening rotating disks,” Commun. Nonlinear Sci. Numeric. Simul., vol. 17, no. 9, pp. 3747–3762, 2012. DOI: 10.1016/j.cnsns.2012.01.026.
  • M. Bayat, et al., “Mechanical and thermal stresses in a functionally graded rotating disk with variable thickness due to radially symmetry loads,” Int. J. Pressure Vessels Piping, vol. 86, no. 6, pp. 357–372, 2009. DOI: 10.1016/j.ijpvp.2008.12.006.
  • R. M. Jones, Deformation Theory of Plasticity. Blacksburg: Bull Ridge Corporation, 2009.
  • F. Vivio, V. Vullo and P. Cifani, “Theoretical Stress Analysis of Rotating Hyperbolic Disk without Singularities Subjected to Thermal Load,” J. Thermal Stresses, vol. 37, no. 2, pp. 117–136, 2014. DOI: 10.1080/01495739.2013.839526.