85
Views
1
CrossRef citations to date
0
Altmetric
Articles

Three-dimensional semi-analytical solutions of arbitrary functionally graded piezoelectric doubly curved shell panel under thermo-electric load

, &
Pages 775-798 | Received 28 Sep 2022, Accepted 05 Feb 2023, Published online: 06 Apr 2023

References

  • C. P. Wu, K. H. Chiu and R. Y. Jiang, “A meshless collocation method for the coupled analysis of functionally graded piezo-thermo-elastic shells and plates under thermal loads,” Int. J. Eng. Sci., vol. 56, pp. 29–48, 2012. DOI: 10.1016/j.ijengsci.2012.03.001.
  • C. P. Wu and S. E. Huang, “Three-dimensional solutions of functionally graded piezo-thermo-elastic shells and plates using a modified Pagano method,” Comput. Mater. Continua, vol. 12, no. 3, pp. 251–281, 2009.
  • C. P. Wu and K. Y. Liu, “A state approach for the analysis of doubly curved functionally graded elastic and piezoelectric shells,” Comput. Mater. Continua, vol. 6, no. 3, pp. 177–199, 2007.
  • Z. Zhong and T. Shang, “Exact analysis of simply supported functionally graded piezo-thermoelectric plates,” J. Intell. Mater. Syst. Struct., vol. 16, no. 7–8, pp. 643–651, 2005. DOI: 10.1177/1045389X05050530.
  • X. Wang and E. Pan, “Exact solutions for simply supported and multilayered piezothermoelastic plates with imperfected interfaces,” TOMECHJ, vol. 1, no. 1, pp. 1–10, 2007. DOI: 10.2174/187415840070101001.
  • G. P. Dube, S. Kapuria and P. C. Dumir, “Exact piezothermoelastic solution of simply-supported orthotropic flat panel in cylindrical bending,” Int. J. Solids Struct., vol. 38, no. 11, pp. 1161–1177, 1996. DOI: 10.1016/0020-7403(96)00020-3.
  • G. P. Dube, S. Kapuria and P. C. Dumir, “Exact piezothermoelastic solution of simply-supported orthotropic circular cylindrical panel in cylindrical bending,” Arch. Appl. Mech., vol. 66, no. 8, pp. 537–554, 1996. DOI: 10.1007/BF00808143.
  • G. M. Kulikov and S. V. Plotnikova, “Assessment of the sampling surfaces formulation for thermoelectroelastic analysis of layered and functionally graded piezoelectric shells,” Mech. Adv. Mater. Struct., vol. 24, no. 5, pp. 392–409, 2017. DOI: 10.1080/15376494.2016.1191098.
  • G. M. Kulikov and S. V. Plotnikova, “An analytical approach to three dimensional coupled thermoelectro elastic analysis of functionally graded piezoelectric plates,” J. Intell. Mater. Syst. Struct., vol. 28, no. 4, pp. 435–450, 2017. DOI: 10.1177/1045389X15588627.
  • G. M. Kulikov and S. V. Plotnikova, “Exact electroelastic analysis of functionally graded piezoelectric shells,” Int. J. Solids Struct., vol. 51, no. 1, pp. 13–25, 2014. DOI: 10.1016/j.ijsolstr.2013.09.004.
  • G. M. Kulikov, S. V. Plotnikova and A. A. Mamontov, “Sampling surfaces formulation for thermoelastic analysis of laminated functionally graded shells,” Meccanica, vol. 51, no. 8, pp. 1913–1929, 2016. DOI: 10.1007/s11012-015-0341-1.
  • G. M. Kulikov and S. V. Plotnikova, “Exact 3D thermoelectroelastic analysis of piezoelectric plates through a sampling surfaces method,” Mech. Adv. Mater. Struct., vol. 22, no. 1–2, pp. 33–43, 2015. DOI: 10.1080/15376494.2014.907949.
  • J. C. Monge and J. L. Mantari, “Exact solution of thermo-mechanical analysis of laminated composite and sandwich doubly-curved shell,” Compos. Struct., vol. 245, pp. 112323, 2020. DOI: 10.1016/j.compstruct.2020.112323.
  • C. P. Wu and S. Ding, “Coupled thermo-electro-mechanical analysis of sandwiched hybrid functionally graded elastic material and piezoelectric plates under thermal loads,” J. Mech. Eng. Sci., vol. 232, no. 10, pp. 1–20, 2017. DOI: 10.1177/0954406217710674.
  • Z. Zhong and E. T. Shang, “Three-dimensional exact analysis of a simply supported functionally gradient piezoelectric plate,” Int. J. Solids Struct., vol. 40, no. 20, pp. 5335–5352, 2003. DOI: 10.1016/S0020-7683(03)00288-9.
  • S. Brischetto, S., “Convergence analysis of the exponential matrix method for the solution of 3D equilibrium equations for free vibration analysis of plates and shells,” Composite Part B, vol. 98, pp. 453–471, 2016. DOI: 10.1016/j.compositesb.2016.05.047.
  • S. Brischetto, S., “Exact three-dimensional static analysis of singe-and multi-layered plates and shells,” Composite Part B, vol. 119, pp. 230–252, 2017. DOI: 10.1016/j.compositesb.2017.03.010.
  • S. Brischetto, R. Leetsch, E. Carrera, T. Wallmersperger and B. Kröplin, “Thermo-mechanical bending of functionally graded plates,” J. Thermal Stress., vol. 31, no. 3, pp. 286–308, 2008. DOI: 10.1080/01495730701876775.
  • S. Brischetto and E. Carrera, “Coupled thermo-electro-mechanical analysis of smart plates embedding composite and piezoelectric layers,” J. Thermal Stress., vol. 35, no. 9, pp. 766–804, 2012. DOI: 10.1080/01495739.2012.689232.
  • C. P. Wu, K. H. Chiu and Y. M. Wang, “A review on the three-dimensional analytical approaches of multilayered and functionally graded piezoelectric plates and shells,’’ Computers,” Materials Continua, vol. 8, no. 2, pp. 93–132, 2008.
  • C. P. Wu and Y. C. Liu, “A review of semi-analytical numerical methods for laminated composite and multilayered functionally graded elastic/piezoelectric plates and shells,” Compos. Struct., vol. 147, pp. 1–15, 2016. DOI: 10.1016/j.compstruct.2016.03.031.
  • J. Fan and J. Zhang, “Analytical solutions for thick, doubly curved, laminated shells,” J. Eng. Mech., vol. 118, no. 7, pp. 1338–1356, 1992. DOI: 10.1061/(ASCE)0733-9399(192)118:7(1338).
  • T. M. B. Albarody and H. H. Al-Kayiem, “Dynamic analysis of laminated composite thermo-magneto-electro-elastic shells,” J. Mech. Sci. Technol., vol. 28, no. 12, pp. 4877–4891, 2014. DOI: 10.1007/s12206-014-0801-3.
  • K. Xu, A. K. Noor and Y. Y. Tang, “Three-dimensional solutions for coupled thermoelectroelastic response of multilayered plates,” Comput. Methods Appl. Mech. Eng., vol. 126, no. 3–4, pp. 355–371, 1995. DOI: 10.106/0045-7825(95)00825-L.
  • K. Xu and A. K. Noor, “Three-dimensional analytical solutions for coupled thermoelectroelastic response of multilayered cylindrical shells,” AIAA J., vol. 34, no. 4, pp. 802–812, 1996. DOI: 10.2514/3.13143.
  • C. P. Wu, J. Y. Lo and C. Kung, “An asymptotic theory for dynamic response of laminated piezoelectric shells,” Acta Mech., vol. 183, no. 3–4, pp. 177–208, 2006. DOI: 10.1007/s00707-005-0306-3.
  • A. Wang, H. Chen, Y. Hao and W. Zhang, “Vibration and bending behavior of functionally graded nanocomposite doubly-curved shallow shells reinforced by graphene nanoplates,” Results Phys., vol. 9, pp. 550–559, 2018. DOI: 10.1016/j.rinp.2018.02.062.
  • N. F. P. Ewolo, G. E. Ntamack and L. Azrar, “Dynamic and static behaviors of multilayered angle-ply magnetoelectroelastic laminates with viscoelastic interfaces,” Compos. Struct., vol. 189, pp. 667–687, 2018. DOI: 10.1016/j.compstruct.2018.01.083.
  • N. F. P. Ewolo, G. E. Ntamack and L. Azrar, “Dynamic analysis of multilayered magnetoelectroelastic plates based on a pseudo-Stroh formalism and Lagrange polynomials,” J. Intell. Mater. Syst. Struct., vol. 30, pp. 1–24, 2019. DOI: 10.1177/1045389X19828505.
  • N. F. P. Ewolo, G. E. Ntamack and L. Azrar, “Coupled state-space and Gauss integration procedures for static analysis of general functionally graded magnetoelectroelastic laminated plates,” Mech. Adv. Mater. Struct., vol. 29, no. 11, pp. 553–1569, 2022. DOI: 10.1080/15376494.2020.1829758.
  • N. F. P. Ewolo, G. E. Ntamack and L. Azrar, “Three-dimensional modeling of static deformation of arbitrary functionally graded multilayered multiferroic composites plates with weakly and highly conducting imperfect interfaces,” J. Intell. Mater. Syst. Struct., vol. 32, no. 17, pp. 1–26, 2021. DOI: 10.1177/1045389X20983883.
  • M. J. A. Manyo, G. E. Ntamack and L. Azrar, “3D-Dynamic modeling of cross-ply magneto-electro-elastic laminates based on the pseudo-stroh formalism,” Mech. Adv. Mater. Struct., vol. 28, no. 13, pp. 1337–1354, 2021. DOI: 10.1080/15376494.2019.1668094.
  • E. Carrera, M. Cinefra and F. A. Fazzolari, “Some results on thermal stress of layered plates and shells by using unified formulation,” J. Thermal Stress., vol. 36, no. 6, pp. 589–625, 2013. DOI: 10.1080/01495739.2013.784122.
  • H. H. Meuyou, F. P. Ewolo Ngak, G. E. Ntamack and L. Azrar, “A virtual layers-state-space method for 3D responses of arbitrary functionally graded magneto electro elastic plate,” Compos. Struct., vol. 268, pp. 113782, 2021. DOI: 10.1060/j.compstruct.2021.113782.
  • G. L. She, “Guided wave propagation of porous functionally graded plates: The effects of thermal loadings,” J. Thermal Stress., vol. 44, no. 10, pp. 1289–1305, 2021. DOI: 10.1080/01495739.2021.1974323.
  • S. Zghal, S. Trabelsi and A. Frikha, “Thermal free vibration analysis of functionally graded plates and panels with an improved finite shell element,” J. Thermal Stress., vol. 44, no. 3, pp. 315–341, 2021. DOI: 10.10.80/01495739.2021.187.1577.
  • S. Brischetto and R. Torre, “3D shell model for the thermo-mechanical analysis of FGM structures via imposed and calculated temperature profiles,” Aerospace Sci. Technol., vol. 85, pp. 125–149, 2019. DOI: 10.1016/j.ast.2018.12.011.
  • W. Ye, J. Liu, Q. Zang and G. Lin, “Investigation of bending behavior for laminated composite magneto-electro-elastic cylindrical shells subjected to mechanical or electric/magnetic loads,” Comput. Math. Appl., vol. 80, no. 7, pp. 1839–1857, 2020. DOI: 10.1016/j.camwa.2020.08.015.
  • A. Alibeigloo, “Three-dimensional semi-analytical thermo-elasticity solution for a functionally graded solid and an annular circular plate,” J. Thermal Stress., vol. 35, no. 8, pp. 653–676, 2012. DOI: 10.1080/01495739.2012.688663.
  • P. Ayoubi and A. Alibeigloo, “Three-dimensional transient analysis of FGM cylindrical shell subjected to thermal and mechanical loading,” J. Thermal Stress., vol. 40, no. 9, pp. 1166–1183, 2017. DOI: 10.1080/01495739.2017.1327720.
  • A. Alibeigloo, “Coupled thermoelasticity analysis of FGM plate integrated with piezoelectric layers under thermal shock,” J. Thermal Stresses, vol. 42, no. 11, pp. 1357–1375, 2019. DOI: 10.1080/01495739.2019.1640653.
  • M. Sobhy and A. F. Radwan, “An axial magnetic field effect on frequency analysis of rotating sandwich cylindrical shells with FG graphene/AL face sheets and honeycomb core,” Int. J. Appl. Mech., vol. 14, no. 8, pp. 2250074, 2022. DOI: 10.1142/S1758825122500740.
  • M. N. M. Allam, A. F. Radwan and M. Sobhy, “Hygrothermal deformation of spinning FG graphene sandwich cylindrical shells having an auxetic core,” Eng. Struct., vol. 251, pp. 113433, 2022. DOI: 10.1016/j.engstruct.2021.113433.
  • F. Alsebai, F. H. H. Al Mukahal and M. Sobhy, “Semi-analytical solution for thermo-piezoelectric bending of FG porous plates reinforced with graphene platelets,” Mathematics, vol. 10, no. 21, pp. 4104, 2022. DOI: 10.3390/math10214104.
  • M. Sobhy and F. H. H. Al Mukahal, “Wave dispersion analysis of functionally graded GPLS-reinforced sandwich piezoelectromagnetic plates with a honeycomb core,” Mathematics, vol. 10, no. 17, pp. 3207, 2022. DOI: 10.3390/math10173207.
  • M. Sobhy and F. H. H. Al Mukahal, “Analysis of electromagnetic effects on vibration of functionally graded GPLS reinforced piezoelectromagnetic plates on an elastic substrate,” Crystals, vol. 12, no. 4, pp. 487, 2022. DOI: 10.3390/cryst1204087.
  • M. Sobhy, M., “Stability analysis of smart FG sandwich plates with auxetic core,” Int. J. Appl. Mech., vol. 13, no. 08, pp. 2150093, 2021. DOI: 10.1142/S1758825121500939.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.