931
Views
2
CrossRef citations to date
0
Altmetric
Articles

Multiphysics modeling of metal based additive manufacturing processes with focus on thermomechanical conditions

ORCID Icon, ORCID Icon & ORCID Icon
Pages 445-463 | Received 06 Mar 2023, Accepted 10 Mar 2023, Published online: 20 Apr 2023

References

  • M. Langelaar, “An additive manufacturing filter for topology optimization of print-ready designs,” Struct. Multidisc. Optim., vol. 55, no. 3, pp. 871–883, Mar. 2017. DOI: 10.1007/s00158-016-1522-2.
  • L. Agnusdei and A. del Prete, “Additive manufacturing for sustainability: a systematic literature review,” Sustain. Futures, vol. 4, p. 100098, Jan. 2022. DOI: 10.1016/j.sftr.2022.100098.
  • L. M. Galantucci, M. G. Guerra, M. Dassisti, and F. Lavecchia, “Additive manufacturing: new trends in the 4th industrial revolution,” in Proceedings of the 4th International Conference on the Industry 4.0 Model for Advanced Manufacturing, 2019, pp. 153–169.
  • N. T. Aboulkhair, N. M. Everitt, I. Ashcroft, and C. Tuck, “Reducing porosity in AlSi10Mg parts processed by selective laser melting,” Addit. Manuf., vol. 1–4, pp. 77–86, Oct. 2014. DOI: 10.1016/j.addma.2014.08.001.
  • L. Thijs, F. Verhaeghe, T. Craeghs, J. van Humbeeck, and J. P. Kruth, “A study of the microstructural evolution during selective laser melting of Ti-6Al-4V,” Acta Mater., vol. 58, no. 9, pp. 3303–3312, May 2010. DOI: 10.1016/j.actamat.2010.02.004.
  • M. Bayat et al., “Keyhole-induced porosities in Laser-based Powder Bed Fusion (L-PBF) of Ti6Al4V: high-fidelity modelling and experimental validation,” Addit. Manuf., vol. 30, p. 100835, Dec. 2019. DOI: 10.1016/j.addma.2019.100835.
  • D. de Baere et al., “Thermo-mechanical modelling of stress relief heat treatments after laser-based powder bed fusion,” Addit. Manuf., vol. 38, p. 101818, Feb. 2021. DOI: 10.1016/j.addma.2020.101818.
  • T. DebRoy et al., “Additive manufacturing of metallic components – Process, structure and properties,” Prog. Mater. Sci., vol. 92, pp. 112–224, Mar. 2018. DOI: 10.1016/j.pmatsci.2017.10.001.
  • S. Afazov, E. Semerdzhieva, D. Scrimieri, A. Serjouei, B. Kairoshev, and F. Derguti, “An improved distortion compensation approach for additive manufacturing using optically scanned data,” Virtual Phys. Prototyp., vol. 16, no. 1, pp. 1–13, 2021. DOI: 10.1080/17452759.2021.1881702.
  • M. Bayat, W. Dong, J. Thorborg, A. C. To, and J. H. Hattel, “A review of multi-scale and multi-physics simulations of metal additive manufacturing processes with focus on modeling strategies,” Addit. Manuf., vol. 47, p. 102278, Nov. 2021. DOI: 10.1016/j.addma.2021.102278.
  • M. Bayat, “Multi-scale multiphysics simulation of the thermo-fluid-metallurgical-mechanical conditions during metal additive manufacturing,” Technical University of Denmark, 2020.
  • E. R. Denlinger and P. Michaleris, “Effect of stress relaxation on distortion in additive manufacturing process modeling,” Addit. Manuf., vol. 12, pp. 51–59, Oct. 2016. DOI: 10.1016/j.addma.2016.06.011.
  • A. Zinoviev, O. Zinovieva, V. Ploshikhin, V. Romanova, and R. Balokhonov, “Evolution of grain structure during laser additive manufacturing. Simulation by a cellular automata method,” Mater. Des., vol. 106, pp. 321–329, 2016. DOI: 10.1016/j.matdes.2016.05.125.
  • J. Li, X. Zhou, M. Brochu, N. Provatas, and Y. F. Zhao, “Solidification microstructure simulation of Ti-6Al-4V in metal additive manufacturing: a review,” Addit. Manuf., vol. 31, p. 100989, Jan. 2020. DOI: 10.1016/j.addma.2019.100989.
  • M. Bayat, V. K. Nadimpalli, D. B. Pedersen, and J. H. Hattel, “A fundamental investigation of thermo-capillarity in laser powder bed fusion of metals and alloys,” Int. J. Heat Mass Transf., vol. 166, p. 120766, Feb. 2021. DOI: 10.1016/j.ijheatmasstransfer.2020.120766.
  • M. Bayat et al., “Part-scale thermo-mechanical modelling of distortions in Laser Powder Bed Fusion – Analysis of the sequential flash heating method with experimental validation,” Addit. Manuf., vol. 36, p. 101508, Dec. 2020. DOI: 10.1016/j.addma.2020.101508.
  • O. Zinovieva, A. Zinoviev, and V. Ploshikhin, “Three-dimensional modeling of the microstructure evolution during metal additive manufacturing,” Comput. Mater. Sci., vol. 141, pp. 207–220, Jan. 2018. DOI: 10.1016/j.commatsci.2017.09.018.
  • M. Chiumenti et al., “Numerical modelling and experimental validation in selective laser melting,” Addit. Manuf., vol. 18, pp. 171–185, Dec. 2017. DOI: 10.1016/j.addma.2017.09.002.
  • N. E. Hodge, R. M. Ferencz, and R. M. Vignes, “Experimental comparison of residual stresses for a thermomechanical model for the simulation of selective laser melting,” Addit. Manuf., vol. 12, pp. 159–168, 2016. DOI: 10.1016/j.addma.2016.05.011.
  • X. Liang, L. Cheng, Q. Chen, Q. Yang, and A. C. To, “A modified method for estimating inherent strains from detailed process simulation for fast residual distortion prediction of single-walled structures fabricated by directed energy deposition,” Addit. Manuf., vol. 23, pp. 471–486, 2018. DOI: 10.1016/j.addma.2018.08.029.
  • X. Liang, Q. Chen, L. Cheng, D. Hayduke, and A. C. To, “Modified inherent strain method for efficient prediction of residual deformation in direct metal laser sintered components,” Comput. Mech., vol. 64, no. 6, pp. 1719–1733, Dec. 2019. DOI: 10.1007/s00466-019-01748-6.
  • W. Dong, X. A. Jimenez, and A. C. To, “Temperature-dependent modified inherent strain method for predicting residual stress and distortion of Ti6Al4V walls manufactured by wire-arc directed energy deposition,” Addit. Manuf., vol. 62, p. 103386, Jan. 2023. DOI: 10.1016/j.addma.2022.103386.
  • W. Dong, X. Liang, Q. Chen, S. Hinnebusch, Z. Zhou, and A. C. To, “A new procedure for implementing the modified inherent strain method with improved accuracy in predicting both residual stress and deformation for laser powder bed fusion,” Addit. Manuf., vol. 47, p. 102345, Nov. 2021. DOI: 10.1016/j.addma.2021.102345.
  • Y. Yang, X. Zhou, Q. Li, and C. Ayas, “A computationally efficient thermo-mechanical model for wire arc additive manufacturing,” Addit. Manuf., vol. 46, p. 102090, Oct. 2021. DOI: 10.1016/j.addma.2021.102090.
  • J. Goldak, A. Chakravarti, and M. Bibby, “A new finite element model for welding heat sources,” Metall. Mater. Trans. B, vol. 15, pp. 299–305, 1984.
  • Y. Ueda, K. Fukuda, K. Nakacho, and S. Endo, “A new measuring method of residual stresses with the aid of finite element method and reliability of estimated values,” J. Soc. Naval Architects Jap., vol. 138, pp. 499–507, 1975.
  • P. S. Cook and D. J. Ritchie, “Determining the laser absorptivity of Ti-6Al-4V during laser powder bed fusion by calibrated melt pool simulation,” Opt. Laser Technol., vol. 162, p. 109247, Jul. 2023. DOI: 10.1016/j.optlastec.2023.109247.
  • R. K. Ganeriwala et al., “Evaluation of a thermomechanical model for prediction of residual stress during laser powder bed fusion of Ti-6Al-4V,” Addit. Manuf., vol. 27, pp. 489–502, May 2019. DOI: 10.1016/j.addma.2019.03.034.
  • L. E. Lindgren, “Finite element modeling and simulation of welding part 1: increased complexity,” J. Therm. Stresses, vol. 24, no. 2, pp. 141–192, Feb. 2001. DOI: 10.1080/01495730150500442.
  • K. Somlo et al., “Anisotropic yield surfaces of additively manufactured metals simulated with crystal plasticity,” Eur. J. Mech., A/Solids, vol. 94, p. 104506, Jul. 2022. DOI: 10.1016/j.euromechsol.2022.104506.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.