85
Views
9
CrossRef citations to date
0
Altmetric
Articles

Double poro-magneto-thermoelastic model with microtemperatures and initial stress under memory-dependent heat transfer

, , &
Pages 743-774 | Received 20 Sep 2022, Accepted 02 Apr 2023, Published online: 27 Apr 2023

References

  • D. Y. Tzou, “A unified field approach for heat conduction from macro-to micro-scales,” 1995.
  • D. Chandrasekharaiah, “Hyperbolic thermoelasticity: a review of recent literature,” 1998.
  • R. Quintanilla and R. Racke, “A note on stability in dual-phase-lag heat conduction,” Int. J. Heat Mass Transfer, vol. 49, no. 7–8, pp. 1209–1213, 2006. DOI: 10.1016/j.ijheatmasstransfer.2005.10.016.
  • A. S. El-Karamany and M. A. Ezzat, “On the dual-phase-lag thermoelasticity theory,” Meccanica, vol. 49, no. 1, pp. 79–89, 2014. DOI: 10.1007/s11012-013-9774-z.
  • I. A. Abbas and A. M. Zenkour, “Dual-phase-lag model on thermoelastic interactions in a semi-infinite medium subjected to a ramp-type heating,” Jnl. Comp. & Theo. Nano, vol. 11, no. 3, pp. 642–645, 2014. DOI: 10.1166/jctn.2014.3407.
  • I. A. Abbas, “Fractional order gn model on thermoelastic interaction in an infinite fibre-reinforced anisotropic plate containing a circular hole,” Jnl. Comp. & Theo. Nano, vol. 11, no. 2, pp. 380–384, 2014. DOI: 10.1166/jctn.2014.3363.
  • I. A. Abbas, “A gn model based upon two-temperature generalized thermoelastic theory in an unbounded medium with a spherical cavity,” Appl. Math. Comput., vol. 245, pp. 108–115, 2014. DOI: 10.1016/j.amc.2014.07.059.
  • I. A. Abbas, “Three-phase lag model on thermoelastic interaction in an unbounded fiber-reinforced anisotropic medium with a cylindrical cavity,” J. Comput. Theor. Nanosci., vol. 11, no. 4, pp. 987–992, 2014. DOI: 10.1166/jctn.2014.3454.
  • I. A. Abbas, “A dual phase lag model on thermoelastic interaction in an infinite fiber-reinforced anisotropic medium with a circular hole,” Mech. Based Des. Struct. Mach., vol. 43, no. 4, pp. 501–513, 2015. DOI: 10.1080/15397734.2015.1029589.
  • A. D. Hobiny and I. A. Abbas, “Theoretical analysis of thermal damages in skin tissue induced by intense moving heat source,” Int. J. Heat Mass Transfer, vol. 124, pp. 1011–1014, 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.04.018.
  • A. M. Zenkour, “Thermoelastic diffusion problem for a half-space due to a refined dual-phase-lag green-naghdi model,” J. Ocean Eng. Sci., vol. 5, no. 3, pp. 214–222, 2020. DOI: 10.1016/j.joes.2019.12.001.
  • M. Ragab, S. M. Abo-Dahab, A. E. Abouelregal, et al., “A thermoelastic piezoelectric fixed rod exposed to an axial moving heat source via a dual-phase-lag model,” Complexity, vol. 2021, pp. 1–11, 2021. DOI: 10.1155/2021/5547566.
  • S. Abo-Dahab, A. Abd-Alla and A. Kilany, “Homotopy perturbation method on wave propagation in a transversely isotropic thermoelastic two-dimensional plate with gravity field,” Numer. Heat Transfer, Part A: Appl., vol. 82, no. 7, pp. 398–410, 2022. DOI: 10.1080/10407782.2022.2079292.
  • P. Lata and H. Himanshi, “Time harmonic interactions due to inclined load in an orthotropic thermoelastic rotating media with fractional order heat transfer and two-temperature,” Coupled Syst. Mech., vol. 11, no. 4, pp. 297–313, 2022.
  • P. Lata and K. Harpreet, “Effect of two temperature and energy dissipation in an axisymmetric modified couple stress isotropic thermoelastic solid,” Coupled Syst. Mech., vol. 11, no. 3, pp. 199–215, 2022.
  • I. Kaur, P. Lata and K. Singh, “Thermoelastic damping in generalized simply supported piezo-thermo-elastic nanobeam,” Struct. Eng. Mech., vol. 81, no. 1, pp. 29–37, 2022.
  • J. L. Wang and H. F. Li, “Surpassing the fractional derivative: Concept of the memory-dependent derivative,” Comput. Math. Appl., vol. 62, no. 3, pp. 1562–1567, 2011. DOI: 10.1016/j.camwa.2011.04.028.
  • K. Diethelm, The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Operators of Caputo Type. Berlin, Heidelberg: Springer, 2004.
  • M. Caputo, “Linear models of dissipation whose q is almost frequency independent—ii,” Geophys. J. Int., vol. 13, no. 5, pp. 529–539, 1967. DOI: 10.1111/j.1365-246X.1967.tb02303.x.
  • M. Ezzat, A. El-Karamany and A. El-Bary, “Modeling of memory-dependent derivative in generalized thermoelasticity,” Eur. Phys. J. Plus, vol. 131, no. 10, pp. 1–12, 2016. DOI: 10.1140/epjp/i2016-16372-3.
  • A. Sur and S. Mondal, “Effect of non-locality in the vibration of a micro-scale beam under two-temperature memory responses,” Waves Random Complex Media, vol. 32, no. 5, pp. 2368–2395, 2022. DOI: 10.1080/17455030.2020.1851069.
  • S. Gupta, S. Das and R. Dutta, “Peltier and seebeck effects on a nonlocal couple stress double porous thermoelastic diffusive material under memory-dependent moore-gibson-thompson theory,” Mech. Adv. Mater. Struct., vol. 30, no. 3, pp. 449–472, 2023. DOI: 10.1080/15376494.2021.2017525.
  • F. S. Bayones, S. Mondal, S. M. Abo-Dahab, et al., “Effect of moving heat source on a magneto-thermoelastic rod in the context of eringen’s nonlocal theory under three-phase lag with a memory dependent derivative,” Mech. Based Des. Struct. Mach., vol. 51, no. 5, pp. 2501–2516, 2023. DOI: 10.1080/15397734.2021.1901735.
  • S. C. Cowin and J. W. Nunziato, “Linear elastic materials with voids,” J. Elasticity, vol. 13, no. 2, pp. 125–147, 1983. DOI: 10.1007/BF00041230.
  • J. W. Nunziato and S. C. Cowin, “A nonlinear theory of elastic materials with voids,” Arch. Rational Mech. Anal., vol. 72, no. 2, pp. 175–201, 1979. DOI: 10.1007/BF00249363.
  • R. Mohamed, I. A. Abbas and S. Abo-Dahab, “Finite element analysis of hydromagnetic flow and heat transfer of a heat generation fluid over a surface embedded in a non-darcian porous medium in the presence of chemical reaction,” Commun. Nonlinear Sci. Numer. Simul., vol. 14, no. 4, pp. 1385–1395, 2009. DOI: 10.1016/j.cnsns.2008.04.006.
  • J. Bouslimi, M. Omri, A. Kilany, et al., “Mathematical model on a photothermal and voids in a semiconductor medium in the context of lord-shulman theory,” Waves Random Complex Media, pp. 1–18, 2021. DOI: 10.1080/17455030.2021.2010835.
  • A. Abd-Alla, S. Abo-Dahab and A. Kilany, “Effect of several fields on a generalized thermoelastic medium with voids in the context of lord-shulman or dual-phase-lag models,” Mech. Based Des. Struct. Mach., vol. 50, no. 11, pp. 3901–3924, 2022. DOI: 10.1080/15397734.2020.1823852.
  • A. Kilany, S. Abo-Dahab, A. Abd-Alla, et al., “Non-integer order analysis of electro-magneto-thermoelastic with diffusion and voids considering lord–shulman and dual-phase-lag models with rotation and gravity,” Waves Random Complex Media, pp. 1–31, 2022. DOI: 10.1080/17455030.2022.2092663.
  • J. G. Berryman and H. F. Wang, “Elastic wave propagation and attenuation in a double-porosity dual-permeability medium,” Int. J. Rock Mech. Mining Sci., vol. 37, no. 1–2, pp. 63–78, 2000. DOI: 10.1016/S1365-1609(99)00092-1.
  • N. Khalili and A. Selvadurai, “A fully coupled constitutive model for thermo-hydro-mechanical analysis in elastic media with double porosity,” Geophys. Res. Lett, vol. 30, no. 24, pp. 2268–2271, 2003. DOI: 10.1029/2003GL018838.
  • B. Straughan, “Stability and uniqueness in double porosity elasticity,” Int. J. Eng. Sci., vol. 65, pp. 1–8, 2013. DOI: 10.1016/j.ijengsci.2013.01.001.
  • D. Ieşan and R. Quintanilla, “On a theory of thermoelastic materials with a double porosity structure,” J. Thermal Stresses, vol. 37, no. 9, pp. 1017–1036, 2014. DOI: 10.1080/01495739.2014.914776.
  • M. Abdou, M. Othman, R. Tantawi, et al., “Effect of rotation and gravity on generalized thermoelastic medium with double porosity under ls theory,” J. Mater. Sci. Nanotechnol., vol. 6, no. 3, pp. 304–317, 2018.
  • M. Abdou, M. I. Othman, R. S. Tantawi, et al., “Exact solutions of generalized thermoelastic medium with double porosity under l–s theory,” Indian J Phys, vol. 94, no. 5, pp. 725–736, 2020. DOI: 10.1007/s12648-019-01505-8.
  • S. Gupta, S. Das and R. Dutta, “Influence of gravity, magnetic field, and thermal shock on mechanically loaded rotating fgdptm structure under green-naghdi theory,” Mech. Based Des. Struct. Mach., vol. 51, no. 2, pp. 764–792, 2023. DOI: 10.1080/15397734.2020.1853565.
  • K. K. Kalkal, A. Kadian and S. Kumar, “Three-phase-lag functionally graded thermoelastic model having double porosity and gravitational effect,” J. Ocean Eng. Sci., vol. 8, no. 1, pp. 42–54, 2023. DOI: 10.1016/j.joes.2021.11.005.
  • S. Gupta, R. Dutta, S. Das, et al., “Hall current effect in double poro-thermoelastic material with fractional-order moore–gibson–thompson heat equation subjected to eringen’s nonlocal theory,” Waves Random Complex Media, pp. 1–36, 2022. DOI: 10.1080/17455030.2021.2021315.
  • S. Gupta, R. Dutta and S. Das, “Memory response in a nonlocal micropolar double porous thermoelastic medium with variable conductivity under moore-gibson-thompson thermoelasticity theory,” J. Ocean Eng. Sci., 2022. DOI: 10.1016/j.joes.2022.01.010.
  • S. Gupta, R. Dutta and S. Das, “Photothermal excitation of an initially stressed nonlocal semiconducting double porous thermoelastic material under fractional order triple-phase-lag theory,” HFF, vol. 32, no. 12, pp. 3697–3725, 2022. (ahead-of-print). DOI: 10.1108/HFF-10-2021-0700.
  • R. A. Grot, “Thermodynamics of a continuum with microstructure,” Int. J. Eng. Sci., vol. 7, no. 8, pp. 801–814, 1969. DOI: 10.1016/0020-7225(69)90062-7.
  • R. D. I. Quintanilla, “On a theory of thermoelasticity with microtemperatures,” J. Thermal Stresses, vol. 23, no. 3, pp. 199–215, 2000. DOI: 10.1080/014957300280407.
  • P. S. Casas and R. Quintanilla, “Exponential stability in thermoelasticity with microtemperatures,” Int. J. Eng. Sci., vol. 43, no. 1–2, pp. 33–47, 2005. DOI: 10.1016/j.ijengsci.2004.09.004.
  • D. Ieşan, “Thermoelasticity of bodies with microstructure and microtemperatures,” Int. J. Solids Structures, vol. 44, no. 25–26, pp. 8648–8662, 2007. DOI: 10.1016/j.ijsolstr.2007.06.027.
  • M. I. Othman, R. S. Tantawi and M. I. M. Hilal, “Effect of initial stress and the gravity field on micropolar thermoelastic solid with microtemperatures,” JTAM, vol. 54, no. 3, pp. 847–857, 2016. DOI: 10.15632/jtam-pl.54.3.847.
  • A. Kadian, S. Kumar and K. K. Kalkal, “Magneto-thermoelastic interactions in a rotating functionally graded half-space with microtemperatures,” Waves Random Complex Media, vol. 32, no. 6, pp. 2878–2902, 2022. DOI: 10.1080/17455030.2020.1870760.
  • S. Gupta, S. Das, R. Dutta and A. K. Verma, “Higher-order fractional and memory response in nonlocal double poro-magneto-thermoelastic medium with temperature-dependent properties excited by laser pulse,” J. Ocean Eng. Sci., 2022. DOI: 10.1016/j.joes.2022.04.013.
  • A. Abd El-Latief, “New state-space approach and its application in thermoelasticity,” J. Thermal Stresses, vol. 40, no. 2, pp. 135–144, 2017. DOI: 10.1080/01495739.2016.1235963.
  • I. A. Abbas, “A study on fractional order theory in thermoelastic half-space under thermal loading,” Phys. Mesomech., vol. 21, no. 2, pp. 150–156, 2018. DOI: 10.1134/S102995991802008X.
  • A. Gunghas, R. Kumar, S. Deswal and K. K. Kalkal, “Influence of rotation and magnetic fields on a functionally graded thermoelastic solid subjected to a mechanical load,” J. Math., vol. 2019, pp. 1–16, 2019. DOI: 10.1155/2019/1016981.
  • M. I. Othman and S. Mondal, “Memory-dependent derivative effect on 2d problem of generalized thermoelastic rotating medium with lord–shulman model,” Indian J. Phys., vol. 94, no. 8, pp. 1169–1181, 2020. DOI: 10.1007/s12648-019-01548-x.
  • N. Khalili, “Coupling effects in double porosity media with deformable matrix,” Geophys. Res. Lett., vol. 30, no. 22, pp. SDE4-1–4-3, 2003. DOI: 10.1029/2003GL018544.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.