100
Views
4
CrossRef citations to date
0
Altmetric
Articles

Numerical investigation of a non-linear moving boundary problem describing solidification of a phase change material with temperature dependent thermal conductivity and convection

&
Pages 799-822 | Received 21 Oct 2022, Accepted 16 Mar 2023, Published online: 28 Apr 2023

References

  • R. Viskanta, “Heat transfer during melting and solidification of metals,” J. Heat Transfer-Trans. ASME, vol. 110, no. 4b, pp. 1205–1219, 1988. DOI: 10.1115/1.3250621.
  • V. J. Lunardini, Heat Transfer with Freezing and Thawing. New York, NY, USA: Elsevier Science, 1991.
  • V. Alexiades, Mathematical Modeling of Melting and Freezing Processes. New York: Routledge, 1993, DOI: 10.1201/9780203749449.
  • A. Shahsavar, A. H. Majidzadeh, R. B. Mahani and P. Talebizadehsardari, “Entropy and thermal performance analysis of PCM melting and solidification mechanisms in a wavy channel triplex-tube heat exchanger,” Renew. Energ., vol. 165, no. 2, pp. 52–72, 2021. DOI: 10.1016/j.renene.2020.11.074.
  • M. A. Alzoubi, et al., “On the concept of the freezing-on-demand (FoD) in artificial ground freezing for long-term applications,” Int. J. Heat Mass Transf., vol. 143, pp. 118557, 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.118557.
  • J. Mannapperuma and R. P. Singh, “Prediction of freezing and thawing times of foods using a numerical method based on enthalpy formulation,” J. Food Sci., vol. 53, no. 2, pp. 626–630, 1988. DOI: 10.1111/j.1365-2621.1988.tb07770.x.
  • V. Chaurasiya and J. Singh, “An analytical study of coupled heat and mass transfer freeze-drying with convection in a porous half body: A moving boundary problem,” J. Energy Storage, vol. 55, no. Part A, pp. 105394, 2022. DOI: 10.1016/j.est.2022.105394.
  • W. D. Bennon and F. P. Incropera, “The evolution of macrosegregation in statically cast binary ingots,” MTB, vol. 18, no. 3, pp. 611–616, 1987. DOI: 10.1007/BF02654275.
  • M. Parhizi and A. Jain, “Analytical modeling and optimization of phase change thermal management of a Li-ion battery pack,” Appl. Thermal Eng., vol. 148, pp. 229–237, 2019. DOI: 10.1016/j.applthermaleng.2018.11.017.
  • Z.-J. Zheng, et al., “Improving the solidification performance of a latent heat thermal energy storage unit using arrow-shaped fins obtained by an innovative fast optimization algorithm,” Renew. Energ., vol. 195, pp. 566–577, 2022. DOI: 10.1016/j.renene.2022.06.031.
  • J. Crank, Free and Moving Boundary Problems. Oxford: Clarendon press, 1984.
  • J. M. Hill, One-Dimensional Stefan Problems: An Introduction. Essex: University of Michigan: Longman Scientific & Technical, 1987.
  • S. C. Gupta, The Classical Stefan Problem: Basic Concepts, Modeling and Analysis with Quasi-Analytical Solutions and Methods. Amsterdam: Elsevier, 2017.
  • D. Oliver and J. Sunderland, “A phase change problem with temperature-dependent thermal conductivity and specific heat,” Int. J. Heat Mass Transf., vol. 30, no. 12, pp. 2657–2661, 1987. DOI: 10.1016/0017-9310(87)90147-5.
  • A. C. Briozzo and M. F. Natale, “One-phase Stefan problem with temperature-dependent thermal conductivity and a boundary condition of Robin type,” J. Appl. Anal., vol. 21, no. 2, pp. 89–97, 2015. DOI: 10.1515/jaa-2015-0009.
  • F. I. Dragomirescu, et al., “Perturbation solutions for the finite radially symmetric Stefan problem,” Int. J. Therm. Sci., vol. 104, pp. 386–395, 2016. DOI: 10.1016/j.ijthermalsci.2016.01.019.
  • K. N. Rai, J. and S. Jitendra, “A numerical study on non-Fourier heat conduction model of phase change problem with variable internal heat generation,” J. Eng. Math., vol. 129, no. 1, pp. 7, 2021. DOI: 10.1007/s10665-021-10143-1.
  • C.-Y. Yang, “Estimation of the temperature-dependent thermal conductivity in inverse heat conduction problems,” Appl. Math. Model, vol. 23, no. 6, pp. 469–478, 1999. DOI: 10.1016/S0307-904X(98)10093-8.
  • M. F. Natale and D. A. Tarzia, “Explicit solutions to the one-phase Stefan problem with temperature-dependent thermal conductivity and a convective term,” Int. J. Eng. Sci., vol. 41, no. 15, pp. 1685–1698, 2003. DOI: 10.1016/S0020-7225(03)00067-3.
  • M. T. Mustafa, A. F. M. Arif and K. Masood, “Approximate analytic solutions of transient nonlinear heat conduction with temperature-dependent thermal diffusivity,” Abst. and Appl. Analy., pp., vol. 2014, pp. 1–12, 2014. DOI: 10.1155/2014/423421.
  • B. Al-Khamaiseh, Y. S. Muzychka and S. Kocabiyik, “Effect of temperature-dependent thermal conductivity on spreading resistance in flux channels,” J. Ther. Heat Tranf., vol. 33, no. 1, pp, pp. 1–9, 2019. DOI: 10.2514/1.T5418.
  • A. Kumar, A. K. Singh, and Rajeev, “A Stefan problem with temperature and time dependent thermal conductivity,” J. King Soud Univ.-Sci., vol. 32, no. 1, pp. 97–101, 2020. DOI: 10.1016/j.jksus.2018.03.005.
  • J. Singh, K. N. Rai, and Jitendra, “Legendre wavelet based numerical solution of variable latent heat moving boundary problem,” Math. Comput. Simul., vol. 178, pp. 485–500, 2020. DOI: 10.1016/j.matcom.2020.06.020.
  • L. Bougoffa and A. Khanfer, “Solutions of a non-classical Stefan problem with nonlinear thermal coefficients and a Robin boundary condition,” AIMS Math., vol. 6, no. 6, pp. 6569–6579, 2021. DOI: 10.3934/math.2021387.
  • A. Lemenager, “The effect of temperature-dependent thermal conductivity on the geothermal structure of the Sydney Basin,” Geo. Ener., vol. 6, 2018. DOI: 10.1186/s40517-018-0092-5.
  • R. Raza, M. Sohail, T. Abdeljawad, R. Naz and P. Thounthong, “Exploration of Temperature-Dependent Thermal Conductivity and Diffusion Coefficient for Thermal and Mass Transportation in Sutterby Nanofluid Model over a Stretching Cylinder,” Complexity, vol. 2021, pp. 1–14, 2021. DOI: 10.1155/2021/6252864.
  • H. Ribera, T. G. Myers and M. M. MacDevette, “Optimising the heat balance integral method in spherical and cylindrical Stefan problems,” Appl. Math. Comput., vol. 354, no. 1, pp. 216–231, 2019. DOI: 10.1016/j.amc.2019.02.039.
  • A. Kumar, and Rajeev, “A Stefan problem with moving phase change material, variable thermal conductivity and periodic boundary condition,” Appl. Math. Comput., vol. 386, no. 1, pp. 125490, 2020. DOI: 10.1016/j.amc.2020.125490.
  • R. K. Chaudhary, V. Chaurasiya and J. Singh, “Numerical estimation of temperature response with step heating of a multi-layer skin under the generalized boundary condition,” J. Therm. Biol., vol. 108, pp. 103278, 2022. DOI: 10.1016/j.jtherbio.2022.103278.
  • V. Chaurasiya, D. Kumar, K. N. Rai and J. Singh, “A computational solution of a phase-change material in the presence of convection under the most generalized boundary condition,” Ther. Sci. and Eng. Prog., vol. 20, pp. 100664, 2020. DOI: 10.1016/j.tsep.2020.100664.
  • S. L. Mitchell and T. G. Myres, “ Application of Standard and Refined Heat Balance Integral Methods to one-dimensional Stefan Problems,” SIAM Rev, vol. 52, no. 1, pp. 57–86, 2010. DOI: 10.1137/080733036.
  • V. Chaurasiya, S. Upadhyay, K. N. Rai and J. Singh, “A new look in heat balance integral method to a two-dimensional Stefan problem with convection,” Num. Heat Transf., A: Applic., vol. 82, no. 9, pp. 529–542, 2022. DOI: 10.1080/10407782.2022.2079829.
  • M. Z. Khalid, M. Zubair and M. Ali, “An analytical method for the solution of two phase Stefan problem in cylindrical geometry,” Appl. Math. Comput., vol. 342, pp. 295–308, 2019. DOI: 10.1016/j.amc.2017.09.013.
  • V. Chaurasiya, K. N. Rai and J. Singh, “Heat transfer analysis for the solidification of a binary eutectic system under imposed movement of the material,” J. Therm. Anal. Calorim., vol. 147, no. 4, pp. 3229–3246, 2022. DOI: 10.1007/s10973-021-10614-8.
  • V. Chaurasiya, K. N. Rai and J. Singh, “A study of solidification on binary eutectic system with moving phase change material,” Ther. Sci. Eng. Prog, vol. 25, pp. 101002, 2021. DOI: 10.1016/j.tsep.2021.101002.
  • A. Jain and M. Parhizi, “Conditionally exact closed-form solution for moving boundary problems in heat and mass transfer in the presence of advection,” Int. J. Heat Mass Transf., vol. 180, pp. 121802, 2021. DOI: 10.1016/j.ijheatmasstransfer.2021.121802.
  • M. Turkyilmazoglu, “Stefan problems for moving phase change materials and multiple solutions,” Int. J Therm. Sci., vol. 126, pp. 67–73, 2018. DOI: 10.1016/j.ijthermalsci.2017.12.019.
  • V. Chaurasiya, R. Kumar Chaudhary, A. Wakif and J. Singh, “A one-phase Stefan problem with size-dependent thermal conductivity and moving phase change material under the most generalized boundary condition,” Waves Random Complex Media, pp. 1–29, 2022. DOI: 10.1080/17455030.2022.2092913.
  • J. Bollati and A. C. Briozzo, “Stefan problems for the diffusion-convection equation with temperature-dependent thermal coefficients,” Int. J. Non-Linear Mech., vol. 134, pp. 103732, 2021. DOI: 10.1016/j.ijnonlinmec.2021.103732.
  • S. Yadav, D. Kumar and K. N. Rai, “Finite element legendre wavelet galerkin approch to inward solidification in simple body under most generalized boundary condition,” Zeitschrift Für Naturforschung A, vol. 69, no. 10– 11, pp. 501–510, 2014. DOI: 10.5560/zna.2014-0052.
  • V. Chaurasiya, R. K. Chaudhary, M. M. Awad and J. Singh, “A numerical study of a moving boundary problem with variable thermal conductivity and temperature-dependent moving PCM under periodic boundary condition,” Eur. Phys. J. Plus, vol. 137, no. 6, pp. 714, 2022. DOI: 10.1140/epjp/s13360-022-02927-w.
  • M. Razzaghi and S. Yousefi, “The Legendre wavelets operational matrix of integration,” Int. J. Syst. Sci., vol. 32, no. 4, pp. 495–502, 2001. DOI: 10.1080/00207720120227.
  • V. Chaurasiya, K. N. Rai, J. Singh, and Jitendra, “Legendre wavelet residual approach for moving boundary problem with variable thermal physical properties,” Int. J. Nonlinear Sci. Num. Simul., vol. 23, no. 7–8, pp. 957–970, 2022. DOI: 10.1515/ijnsns-2019-0076.
  • S. S. Ray and A. K. Gupta, “Two-dimensional Legendre wavelet method for travelling wave solutions of time-fractional generalized seventh order KdV equation,” Comput. Math. Appl., vol. 73, no. 6, pp. 1118–1133, 2017. DOI: 10.1016/j.camwa.2016.06.046.
  • S. Yadav, S. Upadhyay and K. N. Rai, “Legendre wavelet modified Petrov-Galerkin method in two-dimensional moving boundary problem,” Zeitschrift Für Naturforschung A, vol. 73, no. 1, pp. 23–34, 2017. DOI: 10.1515/zna-2017-0260.
  • A. K. Singh and M. Mehra, “Wavelet collocation method based on Legendre polynomials and its application in solving the stochastic fractional integro-differential equations,” J. Comput. Sci., vol. 51, pp. 101342, 2021. DOI: 10.1016/j.jocs.2021.101342.
  • A. K. Nasab, “Wavelet analysis method for solving linear and nonlinear singular boundary value problems,” Appl. Math. Model, vol. 37, no. 8, pp. 5876–5886, 2013. DOI: 10.1016/j.apm.2012.12.001.
  • D. Kumar, S. Upadhyay, S. Singh and K. N. Rai, “Legendre Wavelet Collocation Solution for System of Linear and Nonlinear Delay Differential Equations,” Int. J. Appl. Comput. Math., vol. 3, no. S1, pp. 295–310, 2017. DOI: 10.1007/s40819-017-0356-y.
  • V. Chaurasiya, A. Jain and J. Singh, “Numerical Study of a Non-Linear Porous Sublimation Problem with Temperature-Dependent Thermal Conductivity and Concentration-Dependent Mass Diffusivity,” J. Heat Transfer-Trans. ASME, vol. 145, no. 7, pp. 72701, 2023. DOI: 10.1115/1.4057024.
  • M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. Washington, D.C.: Dover, 1965.
  • C. L. Andrews, Special functions of mathematics for engineers. Oxford, UK: Oxford University Press, 1997.
  • K. N. Rai and S. Rai, “An analytical study of the solidification in a semi-infinite porous medium,” Int. J. Eng. Sci., vol. 30, no. 2, pp. 247–256, 1992. DOI: 10.1016/0020-7225(92)90057-N.
  • F. Font, “A one-phase Stefan problem with size-dependent thermal conductivity,” Appl. Math. Model, vol. 63, pp. 172–178, 2018. DOI: 10.1016/j.apm.2018.06.052.
  • V. Chaurasiya, A. Jain and J. Singh, “Analytical study of a moving boundary problem describing sublimation process of a humid porous body with convective heat and mass transfer,” J. Therm. Anal. Calorim., vol. 148, no. 6, pp. 2567–2584, 2023. DOI: 10.1007/s10973-022-11906-3.
  • M. N. Özis¸ik and J. C. Uzzell, Jr., and “Exact Solution for Freezing in Cylindrical Symmetry with Extended Freezing Temperature Range,” J. Heat Transfer-Trans. ASME, vol. 101, no. 2, pp. 331–334, 1979. DOI: 10.1115/1.3450969.
  • V. Chaurasiya, D. Kumar, K. N. Rai and J. Singh, “Heat transfer analysis describing freezing of a eutectic system by a line heat sink with convection effect in cylindrical geometry,” Zeitschrift Für Naturforschung A, vol. 77, no. 6, pp. 589–598, 2022. DOI: 10.1515/zna-2021-0320.
  • S. H. Cho and J. E. Sunderland, “Phase change problems with temperature-dependent thermal conductivity,” J. Heat Transfer-Trans. ASME, vol. 96, no. 2, pp. 214–217, 1974. DOI: 10.1115/1.3450167.
  • L. Fang, L. Ren, X. Geng, H. Hu, X. Nie and J. Tjong, “Solidification and Microstructure of Ni-Containing Al-Si-Cu Alloy,” IOP Conf. Ser.: Mater. Sci. Eng., vol. 301, pp. 12002, 2018. DOI: 10.1088/1757-899X/301/1/012002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.