83
Views
0
CrossRef citations to date
0
Altmetric
Articles

Stress waves in laser-material interaction: From atomistic understanding to nanoscale characterization

&
Pages 464-491 | Received 06 Mar 2023, Accepted 21 Mar 2023, Published online: 28 Apr 2023

References

  • C. Wei, et al., “An overview of laser-based multiple metallic material additive manufacturing: from macro- to micro-scales,” Int. J. Extrem. Manuf., vol. 3, no. 1, pp. 012003, Dec. 2021. DOI: 10.1088/2631-7990/abce04.
  • H. Dobbelstein, et al., “Laser metal deposition of refractory high-entropy alloys for high-throughput synthesis and structure-property characterization,” Int. J. Extrem. Manuf., vol. 3, no. 1, pp. 015201, Dec2021. DOI: 10.1088/2631-7990/abcca8.
  • P. Nair S, J. Trisno, H. Wang and J. K. W. Yang, “3D printed fiber sockets for plug and play micro-optics,” Int. J. Extrem. Manuf., vol. 3, no. 1, pp. 015301, Nov. 2021. DOI: 10.1088/2631-7990/abc674.
  • M. S. Dargusch, et al., “Challenges in laser-assisted milling of titanium alloys,” Int. J. Extrem. Manuf., vol. 3, no. 1, pp. 015001, Nov. 2021. DOI: 10.1088/2631-7990/abc26b.
  • J. Yong, Q. Yang, J. Huo, X. Hou and F. Chen, “Underwater gas self-transportation along femtosecond laser-written open superhydrophobic surface microchannels (<100 µm) for bubble/gas manipulation,” Int. J. Extrem. Manuf., vol. 4, no. 1, pp. 015002, Sep. 2022. DOI: 10.1088/2631-7990/ac466f.
  • Z. Zhan, et al., “3D printed ultra-fast photothermal responsive shape memory hydrogel for microrobots,” Int. J. Extrem. Manuf., vol. 4, no. 1, pp. 015302, Dec. 2022. DOI: 10.1088/2631-7990/ac376b.
  • A. Wang, P. Sopeña and D. Grojo, “Burst mode enabled ultrafast laser inscription inside gallium arsenide,” Int. J. Extrem. Manuf., vol. 4, no. 4, pp. 045001, Sep. 2022. DOI: 10.1088/2631-7990/ac8fc3.
  • F. Caballero-Lucas, K. Obata and K. Sugioka, “Enhanced ablation efficiency for silicon by femtosecond laser microprocessing with Ghz bursts in Mhz bursts(BiBurst),” Int. J. Extrem. Manuf., vol. 4, no. 1, pp. 015103, Jan. 2022. DOI: 10.1088/2631-7990/ac466e.
  • X. Wang and X. Xu, “Thermoelastic wave induced by pulsed laser heating,” Appl. Phys. A, vol. 73, no. 1, pp. 107–114, Jul. 2001. DOI: 10.1007/s003390000593.
  • Z. Ding, et al., “Observation of second sound in graphite over 200 K,” Nat. Commun., vol. 13, no. 1, pp. 285, Jan. 2022. DOI: 10.1038/s41467-021-27907-z.
  • D. S. Chandrasekharaiah and K. S. Srinath, “Thermoelastic plane waves without energy dissipation in a half-space due to time-dependent heating of the boundary,” J. Therm. Stresses, vol. 20, no. 6, pp. 659–676, Sep. 1997. DOI: 10.1080/01495739708956123.
  • X. Wang and X. Xu, “Thermoelastic wave in metal induced by ultrafast laser pulses,” J. Therm. Stresses, vol. 25, no. 5, pp. 457–473, May 2002. DOI: 10.1080/01495730252890186.
  • S. Gacek and X. Wang, “Dynamics evolution of shock waves in laser–material interaction,” Appl. Phys. A, vol. 94, no. 3, pp. 675–690, Nov. 2009. DOI: 10.1007/s00339-008-4958-4.
  • X. Wang and X. Xu, “Molecular dynamics simulation of heat transfer and phase change during laser material interaction,” J. Heat Trans., vol. 124, no. 2, pp. 265–274, Apr. 2002. DOI: 10.1115/1.1445289.
  • S. Xu, H. Zhu, L. Zhang, Y. Yue and X. Wang, “Exploration of physics in laser assisted near-field nanomanufacturing,” Chin. J. Lasers, vol. 48, no. 6, pp. 0600001, Mar. 2021. DOI: 10.3788/CJL202148.0600001.
  • X. Wang and X. Xu, “Molecular dynamics simulation of thermal and thermomechanical phenomena in picosecond laser material interaction,” Int. J. Heat Mass Trans., vol. 46, no. 1, pp. 45–53, Oct. 2003. DOI: 10.1016/S0017-9310(02)00259-4.
  • X. Feng and X. Wang, “Nanodomain shock wave in near-field laser–material interaction,” Phys. Lett. A, vol. 369, no. 4, pp. 323–327, Sep. 2007. DOI: 10.1016/j.physleta.2007.04.106.
  • S. Gacek and X. Wang, “Secondary shock wave in laser-material interaction,” J. Appl. Phys., vol. 104, no. 12, pp. 126101, Dec. 2008. DOI: 10.1063/1.3039212.
  • S. Gacek and X. Wang, “Plume splitting in pico-second laser–material interaction under the influence of shock wave,” Phys. Lett. A, vol. 373, no. 37, pp. 3342–3349, Sep. 2009. DOI: 10.1016/j.physleta.2009.07.044.
  • L. Guo and X. Wang, “Effect of molecular weight and density of ambient gas on shock wave in laser-induced surface nanostructuring,” J. Phys. D Appl. Phys., vol. 42, no. 1, pp. 015307, Dec. 2009. DOI: 10.1088/0022-3727/42/1/015307.
  • L. Zhang and X. Wang, “Dynamic structure and mass penetration of shock wave in picosecond laser-material interaction,” Jpn. J. Appl. Phys., vol. 47, no. 2, pp. 964–968, Feb. 2008. DOI: 10.1143/JJAP.47.964.
  • C. Li, J. Zhang and X. Wang, “Phase change and stress waves in picosecond laser–material interaction with shock wave formation,” Appl. Phys. A, vol. 112, no. 3, pp. 677–687, Sep. 2013. DOI: 10.1007/s00339-013-7770-8.
  • B. Wu, S. Tao and S. Lei, “Numerical modeling of laser shock peening with femtosecond laser pulses and comparisons to experiments,” Appl. Surf. Sci., vol. 256, no. 13, pp. 4376–4382, Apr. 2010. DOI: 10.1016/j.apsusc.2010.02.034.
  • C. Li, K. Burney, K. Bergler and X. Wang, “Structural evolution of nanoparticles under picosecond stress waves consolidation,” Comp. Mater. Sci., vol. 95, pp. 74–83, Aug. 2014. DOI: 10.1016/j.commatsci.2014.07.036.
  • X. Wang, “Large-scale molecular dynamics simulation of surface nanostructuring with a laser-assisted scanning tunnelling microscope,” J. Phys. D Appl. Phys., vol. 38, no. 11, pp. 1805–1823, May 2005. DOI: 10.1088/0022-3727/38/11/021.
  • X. Wang and Y. Lu, “Solidification and epitaxial regrowth in surface nanostructuring with laser-assisted scanning tunneling microscope,” J. Appl. Phys., vol. 98, no. 11, pp. 114304, Dec. 2005. DOI: 10.1063/1.2135416.
  • Y. Li, C. Li, W. Yao and X. Wang, “Solid-to-super-critical phase change and resulting stress waves during internal laser ablation,” J. Therm. Stresses, vol. 41, no. 10–12, pp. 1364–1379, Dec. 2018. DOI: 10.1080/01495739.2018.1490634.
  • C. Li, L. Zhang, Y. Li and X. Wang, “Material behavior under extreme domain constraint in laser-assisted surface nanostructuring,” Phys. Lett. A, vol. 380, no. 5–6, pp. 753–763, Feb. 2016. DOI: 10.1016/j.physleta.2015.12.001.
  • X. Tang, S. Xu and X. Wang, “Thermal probing in single microparticle and microfiber induced near-field laser focusing,” Opt. Express, vol. 21, no. 12, pp. 14303–14315, Jun. 2013. DOI: 10.1364/OE.21.014303.
  • X. Tang, Y. Yue, X. Chen and X. Wang, “Sub-wavelength temperature probing in near-field laser heating by particles,” Opt. Express, vol. 20, no. 13, pp. 14152–14167, Jun. 2012. DOI: 10.1364/OE.20.014152.
  • X. Tang, S. Xu and X. Wang, “Nanoscale probing of thermal, stress, and optical fields under near-field laser heating,” PLoS One, vol. 8, no. 3, pp. e58030, Mar. 2013. DOI: 10.1371/journal.pone.0058030.
  • L. Zhang and X. Wang, “Hybrid atomistic-macroscale modeling of long-time material behavior in nanosecond laser-material interaction,” presented at International Photonics Optoelectronics Meetings, Wuhan, China, Nov. 1–2, 2012, paper MTh4A.18, 2012. DOI: 10.1364/LTST.2012.MTh4A.18.
  • L. Tian and X. Wang, “Pulsed laser-induced rapid surface cooling and amorphization,” Jpn. J. Appl. Phys., vol. 47, no. 10, pp. 8113–8119, Oct. 2008. DOI: 10.1143/JJAP.47.8113.
  • X. Wang, “Thermal and thermomechanical phenomena in picosecond laser copper interaction,” J. Heat Trans., vol. 126, no. 3, pp. 355–364, Jun. 2004. DOI: 10.1115/1.1725092.
  • H. Zobeiri, N. Hunter, S. Xu, Y. Xie and X. Wang, “Robust and high-sensitivity thermal probing at the nanoscale based on resonance Raman ratio (R3),” Int. J. Extrem. Manuf., vol. 4, no. 3, pp. 035201, May 2022. DOI: 10.1088/2631-7990/ac6cb1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.