316
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Peridynamic simulation of heat transfer during quenching of semi-solid plate with occurrence of hot cracks

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon &
Pages 1372-1395 | Received 07 Feb 2023, Accepted 23 Jul 2023, Published online: 14 Sep 2023

References

  • D. Li, Boiling water heat transfer study during dc casting of aluminum alloys. The university of British Columbia, 2000. DOI: 10.14288/1.0078703.
  • Y. Zhang, Z. Wen, Z. Zhao, C. Bi, Y. Guo and J. Huang, “Laboratory experimental setup and research on heat transfer characteristics during secondary cooling in continuous casting,” Metals (Basel), vol. 9, no. 1, pp. 61, 2019. DOI: 10.3390/met9010061.
  • M. Maniruzzaman and R. D. Sisson, “Heat transfer coefficients for quenching process simulation,” J. Phys. IV France., vol. 120, pp. 269–276, 2004. DOI: 10.1051/jp4:2004120031.
  • H. Bonakdar and E. V. McAssey, “A method for determining rewetting velocity under generalized boiling conditions,” Nucl. Eng. Des., vol. 66, no. 1, pp. 7–12, 1981. DOI: 10.1016/0029-5493(81)90178-3.
  • S. A. Silling, “Reformulation of elasticity theory for discontinuities and long-range forces,” J. Mech. Phys. Solids., vol. 48, no. 1, pp. 175–209, 2000. DOI: 10.1016/S0022-5096(99)00029-0.
  • W. Gerstle, S. Silling, D. Read, V. Tewary and R. Lehoucq, “Peridynamic simulation of electromigration,” Comput. Mater. Contin., vol. 8, pp. 75–92, 2008. DOI: 10.3970/cmc.2008.008.075.
  • F. Bobaru and M. Duangpanya, “The peridynamic formulation for transient heat conduction,” Int. J. Heat Mass Transf., vol. 53, no. 19–20, pp. 4047–4059, 2010. DOI: 10.1016/j.ijheatmasstransfer.2010.05.024.
  • S. Oterkus, E. Madenci and A. Agwai, “Peridynamic thermal diffusion,” J. Comput. Phys., vol. 265, pp. 71–96, 2014. DOI: 10.1016/j.jcp.2014.01.027.
  • S. Oterkus, E. Madenci and A. Agwai, “Fully coupled peridynamic thermomechanics,” J. Mech. Phys. Solids, vol. 64, pp. 1–23, 2014. DOI: 10.1016/j.jmps.2013.10.011.
  • X. Gu, Q. Zhang and E. Madenci, “Refined bond-based peridynamics for thermal diffusion,” EC, vol. 36, no. 8, pp. 2557–2587, 2019. DOI: 10.1108/EC-09-2018-0433.
  • D. Yang, X. He, X. Liu, Y. Deng and X. Huang, “International journal of mechanical sciences A peridynamics-based cohesive zone model (PD-CZM) for predicting cohesive crack propagation,” Int. J. Mech. Sci., vol. 184, pp. 105830, 2020. DOI: 10.1016/j.ijmecsci.2020.105830.
  • B. Wang, S. Oterkus and E. Oterkus, “Thermomechanical phase change peridynamic model for welding analysis,” Eng. Anal. Bound Elem., vol. 140, pp. 371–385, 2022. DOI: 10.1016/j.enganabound.2022.04.030.
  • B. Kilic and E. Madenci, “Prediction of crack paths in a quenched glass plate by using peridynamic theory,” Int. J. Fract., vol. 156, no. 2, pp. 165–177, 2009. DOI: 10.1007/s10704-009-9355-2.
  • Y. Wang, X. Zhou and T. Zhang, “Mechanics of materials size effect of thermal shock crack patterns in ceramics: Insights from a nonlocal numerical approach.” Mech. Mater., vol. 137, pp. 103133, 2019. DOI: 10.1016/j.mechmat.2019.103133.
  • E. Madenci, A. Barut and M. Dorduncu, Peridynamic Differential Operator for Numerical Analysis. Switzerland, AG: Springer Nature, 2019. DOI: 10.1007/978-3-030-02647-9.
  • P. Nikolaev, M. Sedighi, A. Jivkov and L. Margetts, “Non-local modelling of heat conduction with phase change,” pp. 0–4, 2021. https://repository.lboro.ac.uk/articles/conference_contribution/Non-local_modelling_of_heat_conduction_with_phase_change/14595744.
  • P. Hartmann, C. Weißenfels and P. Wriggers, “A curing model for the numerical simulation within additive manufacturing of soft polymers using peridynamics,” Comp. Part. Mech., vol. 8, no. 2, pp. 369–388, 2021. DOI: 10.1007/s40571-020-00337-2.
  • O. Karpenko, S. Oterkus and E. Oterkus, “Titanium alloy corrosion fatigue crack growth rates prediction: Peridynamics based numerical approach,” Int. J. Fatigue, vol. 162, pp. 107023, 2022. DOI: 10.1016/j.ijfatigue.2022.107023.
  • D. De Meo, C. Diyaroglu, N. Zhu, E. Oterkus and M. A. Siddiq, “Modelling of stress-corrosion cracking by using peridynamics,” Int. J. Hydrogen Energy, vol. 41, no. 15, pp. 6593–6609, 2016. DOI: 10.1016/j.ijhydene.2016.02.154.
  • D. De Meo and E. Oterkus, “Finite element implementation of a peridynamic pitting corrosion damage model,” Ocean Eng., vol. 135, pp. 76–83, 2017. DOI: 10.1016/j.oceaneng.2017.03.002.
  • H. Wang, E. Oterkus and S. Oterkus, “Predicting fracture evolution during lithiation process using peridynamics,” Eng. Fract. Mech., vol. 192, pp. 176–191, 2018. DOI: 10.1016/j.engfracmech.2018.02.009.
  • W. Xia, E. Oterkus and S. Oterkus, “Peridynamic modelling of periodic microstructured materials,” Procedia Struct. Integr., vol. 28, pp. 820–828, 2020. DOI: 10.1016/j.prostr.2020.10.096.
  • C. Diyaroglu, S. Oterkus, E. Oterkus, E. Madenci, S. Han and Y. Hwang, “Peridynamic wetness approach for moisture concentration analysis in electronic packages,” Microelectron Reliab., vol. 70, pp. 103–111, 2017. DOI: 10.1016/j.microrel.2017.01.008.
  • G. Zhang, Q. Le, A. Loghin, A. Subramaniyan and F. Bobaru, “Validation of a peridynamic model for fatigue cracking,” Eng. Fract. Mech., vol. 162, pp. 76–94, 2016. DOI: 10.1016/j.engfracmech.2016.05.008.
  • T. Ni, F. Pesavento, M. Zaccariotto, U. Galvanetto, Q. Z. Zhu and B. A. Schrefler, “Hybrid FEM and peridynamic simulation of hydraulic fracture propagation in saturated porous media,” Comput. Methods Appl. Mech. Eng., vol. 366, pp. 113101, 2020. DOI: 10.1016/j.cma.2020.113101.
  • X. P. Zhou, Y. T. Wang and Y. D. Shou, “Hydromechanical bond-based peridynamic model for pressurized and fluid-driven fracturing processes in fissured porous rocks,” Int. J. Rock Mech. Min. Sci., vol. 132, pp. 104383, 2020. DOI: 10.1016/j.ijrmms.2020.104383.
  • G. A. Kulkarni, Local heat transfer and stress analysis of direct chill casting process. der Otto-von-Guericke-Universität Magdeburg, 2019. DOI: 10.25673/13468.
  • S. Bolduc and L. I. Kiss, “Sensitivity study of the influence of the water boiling parameters on aluminum semi-continuous DC casting,” Int. J. Therm. Sci., vol. 151, pp. 106276, 2020. DOI: 10.1016/j.ijthermalsci.2020.106276.
  • X. Ling, R. G. Keanini and H. P. Cherukuri, “A non-iterative finite element method for inverse heat conduction problems,” Int. J. Numer. Meth. Eng., vol. 56, no. 9, pp. 1315–1334, 2003. DOI: 10.1002/nme.614.
  • C. W. Chang, C. H. Liu and C. C. Wang, “Review of computational schemes in inverse heat conduction problems,” Smart Sci., vol. 6, no. 1, pp. 94–103, 2018. DOI: 10.1080/23080477.2017.1408987.
  • X. Ling and S. N. Atluri, “Stability analysis for inverse heat conduction problems,” C – Comput. Model Eng. Sci., vol. 13, pp. 219–28, 2006.
  • E. Madenci and E. Oterkus, Peridynamic Theory Its Applications, pp. 203–244, 2014. DOI: 10.1007/978-1-4614-8465-3.
  • S. A. Silling, M. Epton, O. Weckner, J. Xu and E. Askari, Peridynamic States Constitutive Modeling, vol. 88, pp. 151–184, 2007. DOI: 10.1007/s10659-007-9125-1.
  • J. Wang, W. Hu, X. Zhang and W. Pan, “Modeling heat transfer subject to inhomogeneous Neumann boundary conditions by smoothed particle hydrodynamics and peridynamics,” Int. J. Heat Mass Transf., vol. 139, pp. 948–962, 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.05.054.
  • N. Karwa and P. Stephan, “Experimental investigation of free-surface jet impingement quenching process,” Int. J. Heat Mass Transf., vol. 64, pp. 1118–1126, 2013. DOI: 10.1016/j.ijheatmasstransfer.2013.05.014.
  • R. Guo, J. Wu, H. Fan, X. Zhan and Y. Hui, “Investigation of dissolved salts on heat transfer for aluminum alloy 2024 during spray quenching,” Appl. Therm. Eng., vol. 107, pp. 1065–1076, 2016. DOI: 10.1016/j.applthermaleng.2016.07.072.
  • U. Alam, Experimental study of local heat transfer during quenching of metals by spray and multiple jets, 2011.
  • L. I. Kiss, T. Meenken, A. Charette, Y. Lefebvre and R. Lévesque, “Effect of water quality and water type on the heat transfer in DC casting BT – Essential readings in light metals,” in: Cast Shop for Aluminum Production, vol. 3, Grandfield JF, Eskin DG, Eds. Cham: Springer International Publishing, 2016, pp. 696–701. DOI: 10.1007/978-3-319-48228-6_87.
  • S. Waldeck, H. Woche, E. Specht and U. Fritsching, “Evaluation of heat transfer in quenching processes with impinging liquid jets,” Int. J. Therm. Sci., vol. 134, pp. 160–167, 2018. DOI: 10.1016/j.ijthermalsci.2018.08.001.
  • E. Caron and M. A. Wells, “Film boiling and water film ejection in the secondary cooling zone of the direct-chill casting process,” Metall. Mater. Trans. B, vol. 43, no. 1, pp. 155–162, 2012. DOI: 10.1007/s11663-011-9579-1.
  • K. H. M. Abdalrahman, U. Alam and E. Specht, “Wetting front tracking during metal quenching using array of jets,” 14th Int. Heat Transf. Conf. IHTC, 475–84. DOI: 10.1115/IHTC14-22080.
  • E. Specht, Heat and Mass Transfer in Thermoprocessing: Fundamentals, Calculations, Processes. Germany: Vulkan-Verlag GmbH, 2017.
  • D. C. Weckman and P. Niessen, “A numerical simulation of the D.C. continuous casting process including nucleate boiling heat transfer,” Metall Trans. B., vol. 13, no. 4, pp. 593–602, 1982. DOI: 10.1007/BF02669173.
  • P. Seleson, “Improved one-point quadrature algorithms for two-dimensional peridynamic models based on analytical calculations,” Comput. Methods Appl. Mech. Eng., vol. 282, pp. 184–217, 2014. DOI: 10.1016/j.cma.2014.06.016.
  • G. Zheng, J. Wang, G. Shen, Y. Xia and W. Li, “A new quadrature algorithm consisting of volume and integral domain corrections for two-dimensional peridynamic models,” Int. J. Fract., vol. 229, no. 1, pp. 39–54, 2021. DOI: 10.1007/s10704-021-00540-z.
  • B. Wang, S. Oterkus and E. Oterkus, “Determination of horizon size in state-based peridynamics,” Contin. Mech. Thermodyn., vol. 35, pp. 705–728, 2023. DOI: 10.1007/s00161-020-00896-y.
  • M. Lalpoor, D. G. Eskin and L. Katgerman, “Thermal expansion/contraction behavior of AA7050 alloy in the as-cast condition relevant to thermomechanical simulation of residual thermal stresses,” Int. J. Mater. Res., vol. 102, no. 10, pp. 1286–1293, 2011. DOI: 10.3139/146.110579.
  • T. Subroto, D. G. Eskin, A. Miroux, K. Ellingsen, M. M’Hamdi and L. Katgerman, “Semi-solid constitutive parameters and failure behavior of a cast AA7050 alloy,” Metall. Mater. Trans. A, vol. 52, no. 2, pp. 871–888, 2021. DOI: 10.1007/s11661-020-06112-5.
  • A. K. Nallathambi, E. Specht and A. Bertram, “Computational aspects of temperature-based finite element technique for the phase-change heat conduction problem,” Comput. Mater. Sci., vol. 47, no. 2, pp. 332–341, 2009. DOI: 10.1016/j.commatsci.2009.08.014.
  • F. Bobaru andM. Duangpanya,“A peridynamic formulation for transient heat conduction in bodies with evolving discontinuities,” J. Comput. Phys., vol. 231, no. 7, pp. 2764–2785, 2012. DOI: 10.1016/j.jcp.2011.12.017.
  • M. Lalpoor, D. G. Eskin and L. Katgerman, “Cold cracking development in AA7050 direct chill–cast billets under various casting conditions,” Metall. Mater. Trans. A, vol. 41, no. 9, pp. 2425–2434, 2010. DOI: 10.1007/s11661-010-0256-9.
  • E. J. Caron andM. A. Wells,“Effect of advanced cooling front (ACF) phenomena on film boiling and transition boiling regimes in the secondary cooling zone during the direct-chill casting of aluminium alloys,” MSF., vol. 519-521, pp. 1687–1692, 2006. DOI: 10.4028/www.scientific.net/MSF.519-521.1687.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.