106
Views
1
CrossRef citations to date
0
Altmetric
Research Article

The ultrashort pulse laser ablation model of silicon based on the generalized thermoelastic theory with spatio-temporal nonlocal effect

ORCID Icon, , , &
Pages 1329-1358 | Received 21 Jun 2021, Accepted 24 Oct 2021, Published online: 01 Nov 2023

References

  • X. C. Wang et al., “Femtosecond laser drilling of alumina ceramic substrates,” Appl. Phys. A, vol. 101, no. 2, pp. 271–278, 2010. DOI: 10.1007/s00339-010-5816-8.
  • H. Zhu et al., “An experimental study of micro-machining of hydroxyapatite using an ultrashort picosecond laser,” Precis. Eng., vol. 54, pp. 154–162, 2018. DOI: 10.1016/j.precisioneng.2018.05.012.
  • A. Narazaki et al., “Study on nonthermal-thermal processing boundary in drilling of ceramics using ultrashort pulse laser system with variable parameters over a wide range,” Appl. Phys. A, vol. 126, no. 4, pp. 252, 2020. DOI: 10.1007/s00339-020-3410-2.
  • S. Tan et al., “A model of femtosecond laser ablation of metal based on dual-phase-lag model,” Acta Phys. Sin, vol. 68, no. 5, pp. 057901, 2019. DOI: 10.7498/aps.68.20182099.
  • H. Shen and D. Feng, “Thermal and mechanical behavior in laser trepan drilling of yttria-stabilized zirconia,” J. Heat Transf., vol. 141, no. 4, pp. 042101.1–042101.12, 2019. DOI: 10.1115/1.4042778.
  • C. Zheng et al., “Crack behavior in ultrafast laser drilling of thermal barrier coated nickel superalloy,” J. Mater. Process. Technol., vol. 282, no. 1-2, pp. 116678, 2020. DOI: 10.1016/j.jmatprotec.2020.116678.
  • R. Kelly and A. Miotello, “Does normal boiling exist due to laser-pulse or ion bombardment,” J. Appl. Phys., vol. 87, no. 6, pp. 3177–3179, 2000. DOI: 10.1063/1.372319.
  • X. Y. Tan et al., “Target ablation characteristics of thin films during nanosecond pulsed laser deposition in the ablation process,” Acta Phys. Sin., vol. 54, no. 8, pp. 3915–3921, 2005.
  • D. Marla, U. V. Bhandarkar and S. S. Joshi, “A model of laser ablation with temperature-dependent material properties, vaporization, phase explosion and plasma shielding,” Appl. Phys. A, vol. 116, no. 1, pp. 273–285, 2014. DOI: 10.1007/s00339-013-8118-0.
  • A. Peterlongo, A. Miotello and R. Kelly, “Laser-pulse sputtering of aluminum: vaporization, boiling, superheating, and gas-dynamic effects,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics, vol. 50, no. 6, pp. 4716–4727, 1994. DOI: 10.1103/physreve.50.4716.
  • R. K. Singh and J. Narayan, “Pulsed-laser evaporation technique for deposition of thin films: physics and theoretical model,” Phys. Rev. B Condens. Matter, vol. 41, no. 13, pp. 8843–8859, 1990. DOI: 10.1103/physrevb.41.8843.
  • Q. M. Lu, “Thermodynamic evolution of phase explosion during high-power nanosecond laser ablation,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys., vol. 67, no. 1 Pt 2, pp. 016410, 2003. DOI: 10.1103/PhysRevE.67.016410.
  • L-j Huang, G-m Zhang, H. Li, B-j Li, Y-y Wang, and N-f Ren, “Selective laser ablation and patterning on Ag thin films with width and depth control,” J Mater Sci: Mater. Electron., vol. 31, no. 6, pp. 4943–4955, 2020. DOI: 10.1007/s10854-020-03061-y.
  • N. Bellini, R. Geremia, and D. Karnakis, “Increasing laser pulse overlap restricts picosecond laser ablation of thin metal films near ablation threshold,” Appl. Phys. A, vol. 123, no. 5, pp. 346, 2017. DOI: 10.1007/s00339-017-0971-9.
  • Y. Sun, D. Fang, M. Saka, and A. K. Soh, “Laser-induced vibrations of micro-beams under different boundary conditions,” Int. J. Solids Struct., vol. 45, no. 7-8, pp. 1993–2013, 2008. DOI: 10.1016/j.ijsolstr.2007.11.006.
  • C. Cattaneo, “A form of heat conduction equation which eliminates the paradox of instantaneous propagation,” C. R. Phys., vol. 247, pp. 431–433, 1958.
  • P. Vernotte, “Les paradoxes de la theorie continue de l’equation de la chaleur,” C. R. Acad. Sci., vol. 246, pp. 3154–3155, 1958.
  • D. Y. Tzou, “Thermal shock phenomena under high-rate response in soils,” Annu. Rev. Heat Transf., vol. 4, no. 4, pp. 111–185, 1992. DOI: 10.1615/AnnualRevHeatTransfer.v4.50.
  • D. Y. Tzou, “A unified field approach for heat conduction from micro-to-macro-scales,” J. Heat Transf., vol. 117, no. 1, pp. 8–16, 1995. DOI: 10.1115/1.2822329.
  • H. W. Lord and Y. Shulman, “A generalized dynamical theory of thermoelasticity,” J. Mech. Phys. Solids, vol. 15, no. 5, pp. 299–309, 1967. DOI: 10.1016/0022-5096(67)90024-5.
  • A. E. Green and K. A. Lindsay, “Thermoelasticity,” J Elasticity, vol. 2, no. 1, pp. 1–7, 1972. DOI: 10.1007/BF00045689.
  • A. E. Green and P. M. Naghdi, “Thermoelasticity without energy dissipation,” J Elasticity, vol. 31, no. 3, pp. 189–208, 1993. DOI: 10.1007/BF00044969.
  • H. M. Youssef, “Theory of two-temperature-generalized thermoelasticity,” J. Appl. Math., vol. 71, no. 3, pp. 383–390, 2006. DOI: 10.1093/imamat/hxh101.
  • X. L. Qi and C. S. Suh, “Generalized thermo-elastodynamics for semiconductor material subject to ultrafast laser heating. Part I: model description and validation,” Int. J. Heat Mass Transf., vol. 53, no. 1-3, pp. 41–47, 2010. DOI: 10.1016/j.ijheatmasstransfer.2009.10.010.
  • Z. B. Kuang, “Variational principles for generalized dynamical theory of thermopiezoelectricity,” Acta Mech., vol. 203, no. 1-2, pp. 1–11, 2009. DOI: 10.1007/s00707-008-0039-1.
  • Y. Z. Wang, X. B. Zhang, and X. N. Song, “A generalized theory of thermoelasticity based on thermomass and its uniqueness theorem,” Acta Mech., vol. 225, no. 3, pp. 797–808, 2014. DOI: 10.1007/s00707-013-1001-4.
  • Y. J. Yu, W. Hu, and X. G. Tian, “A novel generalized thermoelasticity model based on memory-dependent derivative,” Int. J. Eng. Sci., vol. 81, no. 811, pp. 123–134, 2014. DOI: 10.1016/j.ijengsci.2014.04.014.
  • I. A. Abbas and M. Marin, “Analytical solutions of a two-dimensional generalized thermoelastic diffusions problem due to laser pulse,” Iran. J. Sci. Technol. Trans. Mech. Eng., vol. 42, no. 1, pp. 57–71, 2018. DOI: 10.1007/s40997-017-0077-1.
  • Y. Li and T. H. He, “Investigation of a half-space heated by laser pulses based on the generalized thermoelastic theory with variable thermal material properties,” Waves Random Complex Media, vol. 32, no. 1, pp. 120–136, 2022. DOI: 10.1080/17455030.2020.1766157.
  • Y. Li and T. H. He, “The transient response of a functionally graded half-space heated by a laser pulse based on the generalized thermoelasticity with memory-dependent derivative,” Mech. Adv. Mater. Struct., vol. 28, no. 22, pp. 2299–2309, 2021. DOI: 10.1080/15376494.2020.1731888.
  • Y. Li, P. Zhang, C. Li, and T. He, “Fractional order and memory-dependent analysis to the dynamic response of a bi-layered structure due to laser pulse heating,” Int. J. Heat Mass Transf., vol. 144, pp. 118664, 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.118664.
  • M. A. Ezzat, A. S. El-Karamany, and A. A. El-Bary, “Generalized thermo-viscoelasticity with memory-dependent derivatives,” Int. J. Mech. Sci., vol. 89, pp. 470–475, 2014. DOI: 10.1016/j.ijmecsci.2014.10.006.
  • J. L. Wang and H. F. Li, “Surpassing the fractional derivative: concept of the memory-dependent derivative,” Comput. Math. Appl., vol. 62, no. 3, pp. 1562–1567, 2011. DOI: 10.1016/j.camwa.2011.04.028.
  • A. C. Eringen and J. Wegner, “Nonlocal continuum field theories,” Appl. Mech. Rev., vol. 56, no. 2, pp. 391–398, 2003.
  • A. C. Eringen, “On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves,” J. Appl. Phys., vol. 54, no. 9, pp. 4703–4710, 1983. DOI: 10.1063/1.332803.
  • Y. J. Yu, X. G. Tian, and Q. L. Xiong, “Nonlocal thermoelasticity based on nonlocal heat conduction and nonlocal elasticity,” Eur. J. Mech.-A/Solids, vol. 60, pp. 238–253, 2016. DOI: 10.1016/j.euromechsol.2016.08.004.
  • Y. J. Yu, Z.-N. Xue, C.-L. Li, and X.-G. Tian, “Buckling of nanobeams under nonuniform temperature based on nonlocal thermoelasticity,” Compos. Struct., vol. 146, pp. 108–113, 2016. DOI: 10.1016/j.compstruct.2016.03.014.
  • C. L. Li, H. L. Guo, and X. G. Tian, “A size-dependent generalized thermoelastic diffusion theory and its application,” J. Therm. Stress., vol. 40, no. 5, pp. 603–626, 2017. DOI: 10.1080/01495739.2017.1300786.
  • P. Zhang and T. H. He, “A generalized thermoelastic problem with nonlocal effect and memory-dependent derivative when subjected to a moving heat source,” Waves Random Complex Media, vol. 30, no. 1, pp. 142–156, 2020. DOI: 10.1080/17455030.2018.1490043.
  • L. Zhang, M. M. Bhatti, M. Marin and K. S. Mekheimer, “Entropy analysis on the blood flow through anisotropically tapered arteries filled with magnetic zinc-oxide (ZnO) nanoparticles,” Entropy, vol. 22, no. 10, pp. 1070, 2020. DOI: 10.3390/e22101070.
  • L. Brancik, “Programs for fast numerical inversion of Laplace transforms in Matlab language environment,” In Proceedings of the 7th Conference MATLAB’99. Czech Republic, Prague, 1999, pp. 27–39.
  • I. M. Taye, K. Lotfy, A. A. El-Bary, J. Alebraheem, and S. Asad, “The hyperbolic two temperature semiconducting thermoelastic waves by laser pulses,” Comput. Mater. Contin., vol. 67, no. 3, pp. 3601–3618, 2021. DOI: 10.32604/cmc.2021.015223.
  • J. H. Yoo, S. H. Jeong, R. Greif and R. E. Russo, “Explosive change in crater properties during high power nanosecond laser ablation of silicon,” J. Appl. Phys., vol. 88, no. 3, pp. 1638–1649, 2000. DOI: 10.1063/1.373865.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.