3,198
Views
162
CrossRef citations to date
0
Altmetric
Original Articles

State‐of‐the‐Art Adsorption and Membrane Separation Processes for Hydrogen Production in the Chemical and Petrochemical Industries

&
Pages 1123-1193 | Received 14 Dec 2006, Accepted 14 Jan 2007, Published online: 11 May 2007

References

  • Ramage , M. P. 2005 . The Hydrogen Economy: Opportunities, Costs, Barriers and R&D Needs Washington, DC : The National Academy Press .
  • Kirk and Othmer . 1999 . Concise Encyclopedia of Chemical Technology , 4th ed. John Wiley & Sons .
  • 2002 . Gas Processing 2002 . Hydrocarbon Processing , Editorial Staff
  • 2003 . Petrochemical Processes 2003 . Hydrocarbon Processing , Editorial Staff
  • Meyers , R. A. 2004 . Handbook of Petroleum Refining Processes , 3rd ed. NY : McGraw‐Hill .
  • Wittcoff , H. A. , Reuben , B. G. and Plotkin , J. S. 2004 . Industrial Organic Chemicals , 2nd ed. New Jersey : John Wiley & Sons, Inc. .
  • F. , Zia . 2005 . Table supplied by
  • Humphrey , J. L. and Keller II , G. E. 1997 . Separation Process Technology NY : McGraw‐Hill .
  • Collot , A.‐G. 2003 . Prospects for hydrogen from coal . IEA Clean Coal Center ,
  • Sircar , S. , Waldron , W. E. , Roa , M. B. and Anand , M. 1995 . Hydrogen production by hybrid SMR‐PSA‐SSF membrane system . Sep. Pur. Tech. , 17 : 11 – 20 .
  • Hufton , J. R. , Sircar , S. , Baade , W. F. , Abrardo , J. M. and Anand , M. Integrated steam methane reforming process for producing carbon monoxide and hydrogen . US Patent 6, 312, 658 B1 . 2001 .
  • Stocker , J. , Whysall , M. and Miller , G. Q. 1998 . 30 years of PSA technology for hydrogen purification . UOP website
  • Larson , J. , Michel , M. , Zschommler , J. , Whysall , M. and Vanheertum , S. Large scale hydrogen production plants . Uhde and UOP's experience, presented at the AIChE 2003 Spring meeting . UOP website
  • Henderson , M. and Gandhi , M. 2001 . Consider cryogenic methods to improve ammonia production . Hydrocarbon Processing , : 97 – 102 .
  • Fuderer , A. and Rudelstorfer , E. Selective adsorption process . USP 3,986,849 . 1976 .
  • Whysall , M. and Wagemans , L. J.M. Very large‐scale pressure swing adsorption processes . USP 6,210,466 B1 . 2001 .
  • Baksh , M. S.A. and Terbot , C. E. Pressure‐swing adsorption process for the production of hydrogen . US 6,503,299 B2 . 2003 .
  • Baksh , M. S.A. , Ackley , M. W. and Notaro , F. Process and apparatus for hydrogen purification . WO 2004/058630 A2 . 2004 .
  • Baksh , M. S.A. and Ackley , M. W. Pressure‐swing adsorption process for the production of hydrogen . USP 6,340,382 B1 . 2002 .
  • Xu , J. and Weist , E. L. Jr. Six bed pressure swing adsorption process with four steps of pressure equalization . USP 6,454,838 B1 . 2002 .
  • Xu , J. , Rarig , D. L. , Cook , T. A. , Hsu , K.‐K , Schoonover , M. and Agrawal , R. Pressure swing adsorption process with reduced pressure equalization time . USP 2003/0015091 A1 . 2003 .
  • Chen , Y. , Kapoor , A. and Ramachandran , R. Two stage pressure‐swing adsorption process . USP 5,993,517 . 1999 .
  • Chen , Y. , Kapoor , A. and Ramprasad , N. Two phase pressure‐swing adsorption process . USP 6,045,603 . 2000 .
  • Kapoor , A. , Chen , Y. , Davies , S. P. , Kumar , R. and Thorogood , R. M. Production of carbon monoxide from syngas . USP 5,980,857 . 1999 .
  • Sircar , S. and Golden , T. C. 2000 . Purification of hydrogen by pressure swing adsorption . Separation Science and Technology , 35 : 667 – 687 .
  • Keefer , B. G. High‐frequency rotary pressure swing adsorption . USP 6,176,897 B1 . 2001 .
  • Keefer , B. G. and Doman , D. G. Flow regulated pressure swing adsorption system . USP 6,063,191 . 2000 .
  • Keefer , B. G. and Doman , D. G. Flow regulated pressure swing adsorption system . USP RE38,493E . 2004 .
  • Golden , C. M.A. , Golden , T. C. and Battavio , O. J. Multilayered adsorbent system for gas separations by pressure swing adsorption . USP 2003/0205131 A1 . 2003 .
  • Golden , T. C. , Golden , C. M.A. and Zwilling , D. P. Self‐supported structured adsorbent for gas separation . USP 6,656,627 B1 . 2003 .
  • Golden , T. C. and Weist , E. L. 2003 . Activated carbon as sole absorpent in rapid cycle hydrogen PSAs .
  • Keefer , B. G. , Carel , A. , Sellars , B. , Shaw , I. and Larisch , B. Adsorbent laminate structures . USP 6,692,626 B2 . 2004 .
  • Connor , D. J. , Doman , D. G. , Jeziorowski , L. , Keefer , B. G. , Larisch , B. , Mclean , C. R. and Shaw , I. Rotary pressure swing adsorption apparatus . USP 6,406,523 B1 . 2002 .
  • Zhou , L. , Lue , C.‐Z. , Bian , S.‐J. and Zhou , Y.‐P. 2002 . Pure hydrogen from the dry gas of refineries via a novel pressure swing adsorption process . Industrial & Engineering Chemistry Research , 41 : 5290 – 5297 .
  • Jiang , L. , Fox , V. G. and Biegler , L. T. 2004 . Simulation and optimal design of multiple‐bed pressure swing adsorption systems . AIChE Journal , 50 : 2904 – 2917 .
  • Warmuzinski , K. and Tanczyk , M. 1997 . Multicomponent pressure swing adsorption. Part I. Modeling of large‐scale PSA installations . Chemical Engineering and Processing , 36 : 89 – 99 .
  • Tanczyk , M. and Warmuzinski , K. 1998 . Multicomponent pressure swing adsorption. Part II. Experimental verification of the model . Chemical Engineering and Processing , 37 : 301 – 315 .
  • Yang , J. , Ahn , H. , Lee , H. and Lee , C.‐H. 1998 . Hydrogen recovery from coke oven gas using a layered‐column PSA process . 6th, Conference on Fundamentals of Adsorption . May 24–28 1998 , Griens, Fr.. Fundamentals of Adsorption ,
  • Ahn , H. , Yang , J. and Lee , C.‐H. 2001 . Effects of feed composition of coke oven gas on a layered bed H2 PSA process . Adsorption , 7 : 339 – 356 .
  • Lee , C.‐H. , Yang , J. and Ahn , H. 1999 . Effects of carbon‐to‐zeolite ratio on layered bed H2 PSA for coke oven gas . AIChE Journal , 45 : 535 – 545 .
  • Ahn , H. , Lee , C.‐H. , Seo , B. , Yang , J. and Baek , K. 1999 . Backfill cycle of a layered bed H2 PSA process . Adsorption , 5 : 419 – 433 .
  • Waldron , W. E. and Sircar , S. 2000 . Parametric study of a pressure swing adsorption process . Adsorption , 6 : 179 – 188 .
  • Vaporciyan , G. G. and Kadlec , H. R. 1987 . Equilibrium–limited periodic separating reactors . AIChE Journal , 33 : 1334 – 1343 .
  • Vaporciyan , G. G. and Kadlec , H. R. 1989 . Periodic separating reactors: experiments and theory . AIChE Journal , 35 : 831 – 844 .
  • Kadlec , H. R. and Vaporciyan , G. G. Periodic chemical processing system . USP 5,254,368 . 1993 .
  • Sircar , S. , Hufton , J. R. and Nataraj , S. Process and apparatus for the production of hydrogen by steam reforming of hydrocarbon . USP 6,103,143 . 2000 .
  • Hufton , J. R. , Sircar , S. , Baade , W. F. , Abrardo , J. M. and Anand , M. Integrated steam methane reforming process for producing carbon monoxide . USP 6,328,945 B1 . 2001 .
  • Hufton , J. R. and Nataraj , S. Production of carbon monoxide . USP 6,592,836 B2 . 2003 .
  • Anand , M. , Sircar , S. and Carvill , B. T. Process for operating equilibrium controlled reactions . USP 6,303,092 B1 . 2001 .
  • Nataraj , S. , Carvill , B. T. , Hufton , J. R. , Mayorga , S. G. , Gaffney , T. R. and Brzozowski , J. R. Process for operating equilibrium controlled reactions . USP 6,315,973 B1 . 2001 .
  • Carvill , B. T. , Hufton , J. R. , Anand , M. and Sircar , S. 1996 . Sorption‐enhanced reaction process . Aiche Journal , 42 : 2765 – 2772 .
  • Hufton , J. R. , Mayorga , S. and Sircar , S. 1999 . Sorption‐enhanced reaction process for hydrogen production . AIChE Journal , 45 : 248 – 256 .
  • Waldron , W. E. , Hufton , J. R. and Sircar , S. 2001 . Production of hydrogen by cyclic sorption enhanced reaction process . AIChE Journal , 47 : 1477 – 1479 .
  • Ying , D. H.S. , Nataraj , S. , Hufton , J. R. , Xu , J. , Allam , R. J. and Dulley , S. J. Simultaneous shift‐reactive and adsorptive process at moderate temperature to produce pure hydrogen . USP 2004/0081614 A1 . 2004 .
  • Saitou , T. and Sugiyama , K. 1995 . Hydrogen purification with metal hydride sintered pellets using pressure swing adsorption method . Journal of Alloys and Compounds , 231 : 865 – 870 .
  • Suda , S. , Iwata , K. , Sun , Y. M. , Komazaki , Y. and Liu , F. J. 1997 . A pressure‐temperature swing process for the methanation of carbon oxides using fluorinated hydriding alloys . Journal of Alloys and Compounds , 253–254 : 668 – 672 .
  • Daniel , K. D. and Ritter , J. A. 2002 . Equilibrium theory analysis of a pressure swing adsorption cycle utilizing an unfavorable Langmuir isotherm. 1. Periodic Behavior . Industrial & Engineering Chemistry Research , 41 : 3676 – 3687 .
  • Han , C. and Harrison , D. P. 1994 . Simultaneous shift reaction and carbon dioxide separation for the direct production of hydrogen . Chemical Engineering Science , 49 : 5875 – 5883 .
  • Harrison , D. P. and Peng , Z. 2003 . A37 Low carbon monoxide hydrogen by sorption‐enhanced reaction . International Journal of Chemical Reactor Engineering , 1
  • Ortiz , A. L. and Harrison , D. P. 2001 . Hydrogen production using sorption‐enhanced reaction . Industrial & Engineering Chemistry Research , 40 : 5102 – 5109 .
  • Zou , Y. and Rodrigues , A. E. 2001 . The separation enhanced reaction process (SERP) in the production of hydrogen from methane steam reforming . Adsorption Science & Technology , 19 : 655 – 671 .
  • Xiu , G. H. , Li , P. and Rodrigues , A. E. 2002 . Sorption‐enhanced reaction process with reactive regeneration . Chemical Engineering Science , 57 : 3893 – 3908 .
  • Xiu , G.‐H. , Li , P. and Rodrigues , A.E. 2002 . Sorption‐enhanced reaction process with reactive regeneration . Chemical Engineering Science , 57 : 3893 – 3908 .
  • Xiu , G.‐H. , Soares , J. L. , Li , P. and Rodrigues , A.E. 2002 . Simulation of five‐step one‐bed sorption‐enhanced reaction process . AIChE Journal , 48 : 2817 – 2832 .
  • Xiu , G. , Li , P. and Rodrigues , a E. 2003 . Adsorption‐enhanced steam‐methane reforming with intraparticle‐diffusion limitations . Chemical Engineering Journal , 95 : 83 – 93 .
  • Xiu , G. H. , Li , P. and Rodrigues , A. E. 2003a . Adsorption‐enhanced steam‐methane reforming with intraparticle‐diffusion limitations . Chemical Engineering Journal , 95 : 83 – 93 .
  • Xiu , G. H. , Li , P. and Rodrigues , A. E. 2003b . New generalized strategy for improving sorption‐enhanced reaction process . Chemical Engineering Science , 58 : 3425 – 3437 .
  • Xiu , G. H. , Li , P. and Rodrigues , A. E. 2004 . Subsection‐controlling strategy for improving sorption‐enhanced reaction process . Chemical Engineering Research and Design , 82 : 192 – 202 .
  • Ding , Y. and Alpay , E. 2000 . Adsorption‐enhanced steam‐methane reforming . Chemical Engineering Science , 55 : 3929 – 3940 .
  • Ding , Y. and Alpay , E. 2000 . Equilibria and kinetics of CO2 adsorption on hydrotalcite adsorbent . Chemical Engineering Science , 55 : 3461 – 3474 .
  • Ritter , J. A. , Ebner , A. D. , Wang , J. and Zidan , R. 2003 . Implementing a hydrogen economy . Materials Today , : 18 – 23 .
  • Sandrock , G. and Thomas , G. 2001 . The IEA/DOE/SNL on‐line hydride databases . Applied Physics A‐Materials Science & Processing , 72 : 153 – 155 .
  • Yong , Z. , Mata , V. and Rodrigues , A. E. 2000 . Adsorption of carbon dioxide on basic alumina at high temperatures . Journal of Chemical and Engineering Data , 45 : 1093 – 1095 .
  • Easley , M. A. and Horn , W. E. Carbon dioxide adsorption of synthetic meixnerite . USP 5,882,622 . 1999 .
  • Mayorga , S. G. , Gaffney , T. R. , Brzozowski , J. R. and Weigel , S. J. Carbon dioxide adsorbents containing magnesium oxide suitable for use at high temperatures . USP 6,280,503 B1 . 2001 .
  • Yong , Z. , Mata , V. and Rodrigues , A.E. 2001 . Adsorption of carbon dioxide onto hydrotalcite‐like compounds (HTlcs) at high temperatures . Industrial & Engineering Chemistry Research , 40 : 204 – 209 .
  • Yong , Z. and Rodrigues , A.E. 2002 . Hydrotalcite‐like compounds as adsorbents for carbon dioxide . Energy Conversion and Management , 43 : 1865 – 1876 .
  • Soares , J. L. , Moreira , R. , Jose , H. J. , Grande , C. A. and Rodrigues , a E. 2004 . Hydrotalcite materials for carbon dioxide adsorption at high temperatures: characterization and diffusivity measurements . Separation Science and Technology , 39 : 1989 – 2010 .
  • Reynolds , S. P. , Ebner , A. D. and Ritter , J. A. 2005 . New pressure swing adsorption cycles for carbon dioxide sequestration . Adsorption , : 531 – 536 .
  • Gaffney , T. R. , Golden , T. C. , Mayorga , S. G. , Brzozowski , J. R. and Taylor , F. W. Carbon dioxide pressure swing adsorption process using modified alumina adsorbents . USP 5,917,136 . 1999 .
  • Xiong , R. , Ida , J. and Lin , Y. S. 2003 . Kinetics of carbon dioxide sorption on potassium‐doped lithium zirconate . Chem. Eng. Sci. , 58 : 4377 – 4385 .
  • Ida , J.‐I. and Lin , Y. S. 2003 . Mechanism of high‐temperature CO2 sorption on lithium zirconate . Environ. Sci. Technol. , 37 : 1999 – 2004 .
  • Ida , J.‐I. , Xiong , R. and Lin , Y. S. 2004 . Synthesis and CO2 sorption properties of pure and modified lithium zirconate . Sep. Purification Tech. , 36 : 41 – 51 .
  • Nair , B. N. , Yamaguchi , T. , Kawamura , H. , Nakao , S‐I. and Nakagawa , K. 2004 . Processing of lithium zirconate for applications in carbon dioxide separation: Structure and properties of the powders . Journal of the American Ceramic Society , 87 : 68 – 74 .
  • Iyer , M. V. , Gupta , H. , Sakadjian , B. B. and Fan , L.‐S. 2004 . Multicyclic study on the simultaneous carbonation and sulfation of high‐reactivity CaO . Industrial & Engineering Chemistry Research , 43 : 3939 – 3947 .
  • Gupta , H. and Fan , L.‐S. 2002 . Carbonation‐calcination cycle using high reactivity calcium oxide for carbon dioxide separation from flue gas . Industrial & Engineering Chemistry Research , 41 : 4035 – 4042 .
  • Gupta , H. , Iyer , M. V. , Sakadjian , B. B. and Fan , L.‐S. 2004 . Reactive separation of CO2 using pressure pelletised limestone . International Journal of Environmental Technology and Management , 4 : 3 – 20 .
  • Kuramoto , K. , Fujimoto , S. , Morita , A. , Shibano , S. , Suzuki , Y. , Hatano , H. , Lin , S.‐Y. , Harada , M. and Takarada , T. 2003 . Repetitive carbonation‐calcination reactions of Ca‐based sorbents for efficient CO2 sorption at elevated temperatures and pressures . Industrial & Engineering Chemistry Research , 42 : 975 – 981 .
  • Abanades , J. C. 2002 . The maximum capture efficiency of CO2 using a carbonation/calcination cycle of CaO/CaCO3 . Chemical Engineering Journal (Amsterdam, Netherlands) , 90 : 303 – 306 .
  • Rabo , J. A. , Francis , J. N. and Angell , C. L. Adsorption of carbon monoxide using silver zeolites . USP 4,019,880 . 1977 .
  • Rabo , J. A. , Francis , J. N. and Angell , C. L. Selective adsorption of carbon monoxide from gas streams . USP 4,019,879 . 1977 .
  • Peng , X. D. , Golden , T. C. , Pearlstein , R. M. and Pierantozzi , R. 1995 . Co adsorbents based on the formation of a supported Cu(Co)Cl complex . Langmuir , 11 : 534 – 537 .
  • Peng , X.‐D. Co adsorbents with hysteresis . USP 5,529,970 . 1996 .
  • Peng , X.‐D. , Pierantozzi , R. and Golden , T. C. Carbon monoxide adsorbents with hysteresis . USP 5,529,763 . 1996 .
  • Wang , Y. and Lin , Y. S. 1998 . Sol‐gel synthesis and gas adsorption properties of CuCl modified mesoporous alumina . Journal of Sol‐Gel Science and Technology , 11 : 185 – 195 .
  • Hirai , H. , Ohtsuka , N. and Shimazawa , T. 1998 . Copper(I) chloride‐ethanediamine complex supported on silica gel as adsorbent for carbon monoxide . Reactive & Functional Polymers , 37 : 199 – 212 .
  • Hirai , H. , Ootsuka , N. , Sakai , K. and Shimazawa , T. Adsorbent for carbon monoxide . USP 5,922,640 . 1999 .
  • Wang , H. H. , Cong , Y. and Yang , W. S. 2003 . Investigation on the partial oxidation of methane to syngas in a tubular Ba0.5Sr0.5CO0.8Fe0.2O3‐delta membrane reactor . Catalysis Today , 82 : 157 – 166 .
  • Shao , Z. P. , Xiong , G. X. , Dong , H. , Yang , W. H. and Lin , L. W. 2001 . Synthesis, oxygen permeation study and membrane performance of a Ba0.5Sr0.5Co0.8Fe0.2O3‐delta oxygen‐permeable dense ceramic reactor for partial oxidation of methane to syngas . Separation and Purification Technology , 25 : 97 – 116 .
  • Dong , H. , Shao , Z. P. , Xiong , G. X. , Tong , J. H. , Sheng , S. S. and Yang , W. S. 2001 . Investigation on POM reaction in a new perovskite membrane reactor . Catalysis Today , 67 : 3 – 13 .
  • Balachandran , U. , Dusek , J. T. , Mieville , R. L. , Poeppel , R. B. Kleefisch , M. S. 1995 . Dense ceramic membranes for partial oxidation of methane to syngas . Applied Catalysis A‐general , 133 : 19 – 29 .
  • Kharton , V. V. , Sobyanin , V. A. Belyaev , V. D. 2004 . Methane oxidation on the surface of mixed‐conducting La0.3Sr0.7Co0.8Ga0.2O3‐delta . Catalysis Communications , 5 : 311 – 316 .
  • Balachandran , U. , Dusek , J. T. Maiya , P. S. 1997 . Ceramic membrane reactor for converting methane to syngas . Catalysis Today , 36 : 265 – 272 .
  • Zhu , D. C. , Xu , X. Y. Feng , S. J. 2003 . La2NiO4 tubular membrane reactor for conversion of methane to syngas . Catalysis Today , 82 : 151 – 156 .
  • Bouwmeester , H. J.M. 2003 . Dense ceramic membranes for methane conversion . Catalysis Today , 82 : 141 – 150 .
  • Thursfield , A. and Metcalfe , I. S. 2004 . The use of dense mixed ionic and electronic conducting membranes for chemical production . Journal of Materials Chemistry , 14 : 2475 – 2485 .
  • Uemiya , S. 2004 . Brief review of steam reforming using a metal membrane reactor . Topics in Catalysis , 29 : 79 – 84 .
  • Kikuchi , E. 2000 . Membrane reactor application to hydrogen production . Catalysis Today , 56 : 97 – 101 .
  • Kikuchi , E. , Nemoto , Y. Kajiwara , M. 2000 . Steam reforming of methane in membrane reactors: comparison of electroless‐plating and CVD membranes and catalyst packing modes . Catalysis Today , 56 : 75 – 81 .
  • Paglieri , S. N. and Way , J. D. 2002 . Innovations in palladium membrane research . Separation and Purification Methods , 31 : 1 – 169 .
  • Armor , J. N. 1998 . Applications of catalytic inorganic membrane reactors to refinery products . Journal of Membrane Science , 147 : 217 – 233 .
  • Rothenberger , K. S. 2004 . High Pressure hydrogen permeance of porous stainless steel coated with thin palladium film via electroless plating . Journal of Membrane Science , 224 : 55 – 68 .
  • Barbieri , G. , Violante , V. , Dimaio , F. P. , Criscuoli , A. and Drioli , E. 1997 . Methane steam reforming analysis in a palladium‐based catalytic membrane reactor . Industrial & Engineering Chemistry Research , 36 : 3369 – 3374 .
  • Pan , X. L. 2003 . Pd/ceramic hollow fibers for H2 Separation . Separation and Purification Technology , 32 : 265 – 270 .
  • Keuler , J. N. , Lorenzen , L. and Miachon , S. 2002 . Preparing and testing pd films of thickness 1–2 micrometer with high selectivity and high hydrogen permeance . Separation Science and Technology , 37 : 379 – 401 .
  • Lin , Y. M. , Lee , G. L. and Rei , M. H. 1998 . An integrated purification and production of hydrogen with a palladium membrane‐catalytic reactor . Catalysis Today , 44 : 343 – 349 .
  • Lin , Y. M. , Liu , S. L. , Chuang , C. H. and Chu , Y. T. 2003 . Effect of incipient removal of hydrogen through palladium membrane on the conversion of methane steam reforming—experimental and modeling . Catalysis Today , 82 : 127 – 139 .
  • Lin , Y. M. and Rei , M. H. 2000 . Process development for generating high purity hydrogen by using supported palladium membrane reactor as steam reformer . International Journal of Hydrogen Energy , 25 : 211 – 219 .
  • Paturzo , L. and Basile , A. 2002 . Methane conversion to syngas in a composite palladium membrane reactor with increasing number of Pd layers . Industrial & Engineering Chemistry Research , 41 : 1703 – 1710 .
  • Zhao , H. B. , Xiong , G. X. Gu , J. H. 1995 . Preparation and characterization of novel porous metal/ceramic catalytic membrane materials . Catalysis Today , 25 : 237 – 240 .
  • Jayaraman , V. , Lin , Y. S. Pakala , M. Y. 1995 . Fabrication of ultrathin metallic membranes on ceramic supports by sputter‐deposition . J. Memb. Sci. , 99 : 89
  • Basile , A. and Paturzo , L. 2001 . An experimental study of multilayered composite palladium membrane reactors for partial oxidation of methane to syngas . Catalysis Today , 67 : 55 – 64 .
  • Basile , A. , Paturzo , L. and Lagana , F. 2001 . The partial oxidation of methane to syngas in a palladium membrane reactor: simulation and experimental studies . Catalysis Today , 67 : 65 – 75 .
  • Galuszka , J. , Pandey , R. N. and Ahmed , S. 1998 . Methane conversion to syngas in a palladium membrane reactor . Catalysis Today , 46 : 83 – 89 .
  • Gallucci , F. , Paturzo , L. , Fama , A. and Basile , A. 2004 . Experimental study of the methane steam reforming reaction in a dense Pd/Ag membrane reactor . Industrial & Engineering Chemistry Research , 43 : 928 – 933 .
  • Tosti , S. , Adrover , A. Basile , A. 2003 . Characterization of thin wall Pd‐Ag rolled membranes . International Journal of Hydrogen Energy , 28 : 105 – 112 .
  • Marigliano , G. , Barbieri , G. and Drioli , E. 2001 . Effect of energy transport on a palladium‐based membrane reactor for methane steam reforming process . Catalysis Today , 67 : 85 – 99 .
  • Marigliano , G. , Barbieri , G. and Drioli , E. 2003 . Equilibrium conversion for a Pd‐based membrane reactor dependence on the temperature and pressure . Chemical Engineering and Processing , 42 : 231 – 236 .
  • Roy , S. , Cox , B. G. , Adris , A. M. and Pruden , B. B. 1998 . Economics and simulation of fluidized bed membrane reforming . International Journal of Hydrogen Energy , 23 : 745 – 752 .
  • Adris , A. E.M. and Grace , J. R. 1997 . Characteristics of fluidized‐bed membrane reactors: scale‐up and practical issues . Industrial & Engineering Chemistry Research , 36 : 4549 – 4556 .
  • Adris , A. M. , Lim , C. J. and Grace , J. R. 1997 . The fluidized‐bed membrane reactor for steam methane reforming: model verification and parametric study . Chemical Engineering Science , 52 : 1609 – 1622 .
  • Munera , J. , Irusta , S. , Cornaglia , L. and Lombardo , E. 2003 . CO2 reforming of methane as a source of hydrogen using a membrane reactor . Applied Catalysis A‐general , 245 : 383 – 395 .
  • Raybold , T. M. and Huff , M. C. 2002 . Analyzing enhancement of CO2 reforming of CH4 in Pd membrane reactors . Aiche Journal , 48 : 1051 – 1061 .
  • Ma , D. H. and Lund , C. R.F. 2003 . Assessing high‐temperature water‐gas shift membrane reactors . Industrial & Engineering Chemistry Research , 42 : 711 – 717 .
  • Aasberg‐Petersen , K. , Nielsen , C. S. and Jorgensen , S. L. 1998 . Membrane reforming for hydrogen . Catalysis Today , 46 : 193 – 201 .
  • Tosti , S. , Basile , A. , Chiappetta , G. , Rizzello , C. and Violante , V. 2003 . Pd‐Ag membrane reactors for water gas shift reaction . Chemical Engineering Journal , 93 : 23 – 30 .
  • Tosti , S. , Bettinali , L. and Violante , V. 2000 . Rolled thin Pd and Pd‐Ag membranes for hydrogen separation and production . International Journal of Hydrogen Energy , 25 : 319 – 325 .
  • Criscuoli , A. , Basile , A. and Drioli , E. 2000 . An analysis of the performance of membrane reactors for the water‐gas shift reaction using gas feed mixtures . Catalysis Today , 56 : 53 – 64 .
  • Criscuoli , A. , Basile , A. , Drioli , E. and Loiacono , O. 2001 . An economic feasibility study for water gas shift membrane reactor . Journal of Membrane Science , 181 : 21 – 27 .
  • Barbieri , G. , Marigliano , G. , Perri , G. and Drioli , E. 2001 . Conversion‐temperature diagram for a palladium membrane reactor. Analysis of an endothermic reaction: methane steam reforming . Ind. Eng. Chem. Res. , 40 : 2017 – 2026 .
  • Abashar , M. E.E. 2004 . Coupling of steam and dry reforming of methane in catalytic fluidized bed membrane reactors . International Journal of Hydrogen Energy , 29 : 799 – 808 .
  • Hou , K. , Fowles , M. and Hughes , R. 1999 . Potential catalyst deactivation due to hydrogen removal in a membrane reactor used for methane steam reforming . Chemical Engineering Science , 54 : 3783 – 3791 .
  • Siriwardane , R. V. Poston , J. A. 2003 . Characterization of ceramic‐metal composite hydrogen separation membranes consisting of barium oxide, cerium oxide, yttrium oxide and palladium . Applied Surface Science , 217 : 43 – 49 .
  • Tsuru , T. , Tsuge , T. Kubota , S. 2001 . Catalytic membrane reaction for methane steam reforming using porous silica membranes . Separation Science and Technology , 36 : 3721 – 3736 .
  • Kurungot , S. and Yamaguchi , T. 2004 . Stability improvement of Rh/gamma‐Al2O3 catalyst layer by ceria doping for steam reforming in an integrated catalytic membrane reactor system . Catalysis Letters , 92 : 181 – 187 .
  • Kurungot , S. , Yamaguchi , T. and Nakao , S. 2003 . Rh/‐Al2O3 catalytic layer integrated with sol‐gel synthesized microporous silica membrane for compact membrane reactor applications . Catalysis Letters , 86 : 273 – 278 .
  • Prabhu , A. K. , Radhakrishnan , R. and Oyama , S. T. 1999 . Supported nickel catalysts for carbon dioxide reforming of methane in plug flow and membrane reactors . Applied Catalysis A‐General , 183 : 241 – 252 .
  • Prabhu , A. K. and Oyama , S. T. 1999 . Development of a hydrogen selective ceramic membrane and its application for the conversion of greenhouse gases . Chemistry Letters , : 213 – 214 .
  • Prabhu , A. K. and Oyama , S. T. 2000 . Highly hydrogen selective ceramic membranes: application to the transformation of greenhouse gases . Journal of Membrane Science , 176 : 233 – 248 .
  • Lee , D. , Hacarlioglu , P. and Oyama , S. T. 2004 . The effect of pressure in membrane reactors: trade‐off in permeability and equilibrium conversion in the catalytic reforming of CH4 with CO2 . Topics in Catalysis , 29 : 45 – 57 .
  • Liu , B. S. and Au , C. T. 2001 . A La2NiO4‐zeolite membrane reactors for the CO2 reforming of methane to syngas . Catalysis Letters , 77 : 67 – 74 .
  • Liu , B. S. , Gao , L. Z. and Au , C. T. 2002 . Preparation, characterization and application of a catalytic Na A membrane for CH4/CO2 reforming to syngas . Applied Catalysis A‐General , 235 : 193 – 206 .
  • Ferreira‐aparicio , P. , Rodriguez‐Ramos , I. and Guerrero‐Ruiz , A. 2002 . On the applicability of membrane technology to the catalysed dry reforming of methane . Applied Catalysis A‐general , 237 : 239 – 252 .
  • Ferreira‐Aparisio , P. , Rodriguez‐Ramos , I. and Guerrero‐Ruiz , A. 2002 . On the performance of porous vycor membranes for conversion enhancement in the dehydrogenation of methylcyclohexane to toluene . Journal of Catalysis , 212 : 182 – 192 .
  • Ioannides , T. and Verykios , X. E. 1996 . Application of a dense silica membrane reactor in the reactions of dry reforming and partial oxidation of methane . Catalysis Letters , 36 : 165 – 169 .
  • Hasegawa , Y. , Kusakabe , K. and Morooka , S. 2001 . Selective oxidation of carbon monoxide in hydrogen‐rich mixtures by permeation through a platinum‐loaded Y‐type zeolite membrane . Journal of Membrane Science , 190 : 1 – 8 .
  • Giessler , S. , Jordan , L. , da costa , J. C.D. and Lu , G. Q. 2003 . Performance of hydrophobic and hydrophilic silica membrane reactors for the water gas shift reaction . Separation and Purification Technology , 32 : 255 – 264 .
  • Bracht , M. , Alderliesten , P. T. and Kloster , R. 1997 . Water gas shift membrane reactor for CO2 control in IGCC systems: techno‐economic feasibility study . Energy Conversion and Management , 38 : S159 – S164 .
  • Freeman , B. D. 1999 . Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes . Macromolecules , 32 : 375 – 380 .
  • Orme , C. J. , Stone , M. L. , Benson , M. T. and Peterson , E. S. 2003 . Testing of polymer membranes for the selective permeability of hydrogen . Separation Science and Technology , 38 : 3225 – 3238 .
  • Hradil , J. Krystl , V. 2004 . Heterogeneous membranes based on polymeric adsorbents for separation of small molecules . Reactive & Functional Polymers , 61 : 303 – 313 .
  • Patel , N. P. , Aberg , C. M. Sancheza , M. 2004 . Morphological, mechanical and gas‐transport characteristics of crosslinked poly(propylene glycol): homopolymers, nanocomposites and blends . Polymer , 45 : 5941 – 5950 .
  • Patel , N. P. , Miller , A. C. and Spontak , R. J. 2004 . Highly CO2‐permeable and ‐selective membranes derived from crosslinked poly(ethylene glycol) and its nanocomposites . Advanced Functional Materials , 14 : 699 – 707 .
  • Patel , N. P. , Miller , A. C. and Spontak , R. J. 2003 . Highly CO2‐permeable and selective polymer nanocomposite membranes . Advanced Materials , 15 : 729 – 733 .
  • Merkel , T. C. Bondar , V. 1999 . Gas sorption, diffusion, and permeation in poly(2,2‐bis(trifluoromethyl)‐4,5‐difluoro‐1,3‐dioxole‐co‐tetrafluoroethylene . Macromolecules , 32 : 8427 – 8440 .
  • Morisato , A. and Pinnau , I. 1996 . Synthesis and gas permeation properties of poly(4‐methyl‐2‐pentyne) . J. Membrane Sci. , 121 : 243 – 250 .
  • Morisato , A. , Shen , H. C. Sankar , S. S. 1996 . Polymer characterization and gas permeability of poly(1‐trimethylsilyl‐1‐propyne) [Ptmsp], poly(1‐Phenyl‐1‐Propyne) . Journal of Polymer Science Part B‐polymer Physics , 34 : 2209 – 2230 .
  • Kuraoka , K. , Chujo , Y. and Yazawa , T. 2001 . Hydrocarbon separation via porous glass membranes surface‐modified using organosilane compounds . Journal of Membrane Science , 182 : 139 – 149 .
  • Pinnau , I. and He , Z. 2004 . Pure‐ and mixed‐gas permeation properties of polydimethylsiloxane for hydrocarbon/methane and hydrocarbon/hydrogen separation . Journal of Membrane Science , 244 : 227 – 233 .
  • Anand , M. , Langsam , M. , Rao , M. B. and Sircar , S. 1997 . Multicomponent gas separation by selective surface flow (SSF) and polytrimethylsilylpropyne (PTMSP) membranes . Journal of Membrane Science , 123 : 17 – 25 .
  • Paranjape , M. , Clarke , P. F. , Pruden , B. B. , Parrillo , D. J. , Thaeron , C. and Sircar , S. 1998 . Separation of bulk carbon dioxide‐hydrogen mixtures by selective surface flow membrane . Adsorption , 4 : 355 – 360 .
  • Singh , R. P. , Way , J. D. and Mccarley , K. C. 2004 . Development of a model surface flow membrane by modification of porous vycor glass with a fluorosilane . Industrial & Engineering Chemistry Research , 43 : 3033 – 3040 .
  • Mccarley , K. C. and Way , J. D. 2001 . Development of a model surface flow membrane by modification of porous g‐alumina with octadecyltrichlorosilane . Separation and Purification Technology , 25 : 195 – 210 .
  • Kim , Y. Yang , W. S. 2004 . Thermal evolution of the structure of a Mg‐Al‐CO3 layered double hydroxide: Sorption reversibility aspects . Industrial & Engineering Chemistry Research , 43 : 4559 – 4570 .
  • Paturzo , L. , Gallucci , F. , Basile , A. , Vitulli , G. and Pertici , P. 2003 . A Ru‐based catalytic membrane reactor for dry reforming of methane—its catalytic performance compared with tubular packed bed reactors . Catalysis Today , 82 : 57 – 65 .
  • Duke , M. C. Diniz da Costa , J. C. 2004 . Carbonised template molecular sieve silica membranes in fuel processing systems: permeation, hydrostability and regeneration . Journal of Membrane Science , 241 : 325 – 333 .
  • So , J. H. , Yang , S. M. and Park , S. B. 1998 . Preparation of silica‐alumina composite membranes for hydrogen separation by multi‐step pore modifications . J. Membrane Sci. , 147 : 147 – 152 .
  • Iwamoto , Y. , Sato , K. , Kato , T. , Inada , T. and Kubo , Y. 2004 . A hydrogen‐permselective amorphous silica membrane derived from polysilazane . Journal of the European Ceramic Society , 25 : 257 – 264 .
  • Morooka , S. , Yan , S. , Kusakabe , K. and Akiyama , Y. 1995 . Formation of hydrogen‐permselective SiO2 membrane in macropores of alpha‐alumina support tube by thermal‐decomposition of TEOS . J. Membrane Sci. , 101 : 89 – 98 .
  • Lee , D. W. 2003 . Preparation and characterization of SiO2 composite membrane for purification of hydrogen from methanol steam reforming as an energy . Separation and Purification Technology , 32 : 45 – 50 .
  • Chao , C. C. and Tsai , D. S. 2001 . Si‐Al‐C Gas separation membranes derived from polydimethylsilane and aluminum acetylacetonate . J. Membrane Sci. , 192 : 209 – 216 .
  • Sznejer , G. A. , Efremenko , I. and Sheintuch , M. 2004 . Carbon membranes for high temperature gas separations: experiment and theory . AIChE Journal , 50 : 596 – 610 .
  • Pesiri , D. R. , Jorgensen , B. and Dye , R. C. 2003 . Thermal optimization of polybenzimidazole meniscus membranes for the separation of hydrogen, methane, and carbon dioxide . J. Membrane Sci. , 218 : 11 – 18 .
  • Kulprathipanja , A. Alptekin , G. O. 2004 . Effects of water gas shift gases on Pd‐Cu alloy membrane surface morphology and separation properties . Ind. Eng. Chem. Res. , 43 : 4188 – 4198 .
  • Kusuki , Y. Shimazaki , H. 1997 . Gas permeation properties and characterization of asymmetric carbon membranes prepared by pyrolyzing asymmetric polyimide hollow fiber . J. Membrane Sci. , 134 : 245 – 253 .
  • Geiszler , V. C. and Koros , W. J. 1996 . Effects of polyimide pyrolysis conditions on carbon molecular sieve membrane properties . Industrial & Engineering Chemistry Research , 35 : 2999 – 3003 .
  • Kusakabe , K. , Li , Z. Y. , Maeda , H. and Morooka , S. 1995 . Preparation of supported composite membrane by pyrolysis of polycarbosilane for gas separation at high‐temperature . Journal of Membrane Science , 103 : 175 – 180 .
  • Yong , H. H. , Park , N. C. Kang , Y. S. 2001 . Zeolite‐filled polyimide membrane containing 2,4,6‐triaminopyrimidine . J. Membrane Sci. , 188 : 151 – 163 .
  • Feng , X. S. Shao , P. H. 2002 . A Study of silicone rubber/polysulfone composite membranes: correlating H2/N2 and O2/N2 permselectivities . Separation and Purification Technology , 27 : 211 – 223 .
  • Smaihi , M. Schrotter , J. C. 1999 . Gas separation properties of hybrid imide‐siloxane copolymers with various silica contents . J. Membrane Sci. , 161 : 157 – 170 .
  • Wang , D. L. , Li , K. and Teo , W. K. 1995 . Effects of temperature and pressure on gas permselection properties in asymmetric membranes . J. Membrane Sci. , 105 : 89 – 115 .
  • Wang , Z. G. , Chen , T. L. and Xu , J. P. 2000 . Gas transport properties of novel cardo poly(aryl ether ketone)s with pendant alkyl groups . Macromolecules , 33 : 5672 – 5679 .
  • Langsam , M. and Laciak , D. V. 2000 . Synthesis and gas transport properties of random amide imide copolymers . Journal of Polymer Science Part A‐Polymer Chemistry , 38 : 1951 – 1965 .
  • Bonhomme , F. , Welk , M. E. and Nenoff , T. M. 2003 . CO2 Selectivity and Lifetimes of High Silica ZSM‐5 Membranes . Microporous and Mesoporous Materials , 66 : 181 – 188 .
  • Pinnau , I. and Toy , L. G. 1996 . Gas and vapor transport properties of amorphous perfluorinated copolymer membranes based on 2,2‐bistrifluoromethyl‐4,5‐difluoro‐1,3‐dioxole/tetrafluoroethylene . Journal of Membrane Science , 109 : 125 – 133 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.