353
Views
7
CrossRef citations to date
0
Altmetric
Membranes

Analysis of the Water Permeability of Linde Type A Zeolites in Reverse Osmosis

, , , , &
Pages 2824-2833 | Received 08 May 2014, Accepted 15 Jul 2014, Published online: 02 Sep 2014

REFERENCES

  • Gude, V.G., N. Nirmalakhandan, and S. Deng, Renewable and sustainable approaches for desalination. Renewable and Sustainable Energy Reviews, 2010. 14(9): p. 2641 –2654.
  • Srinivas, V., et al., Reducing energy consumption for seawater desalination. American Water Works Association. Journal, 2007. 99(6): p. 95 –106,12.
  • Mulder, M., Basic Principles of Membrane Technology. 2nd Ed. ed1996, Dordrecht, Neth.: Kluwer. 564.
  • Wijmans, J.G. and R.W. Baker, The Solution-Diffusion Model - a Review. Journal of Membrane Science, 1995. 107(1–2): p. 1 –21.
  • Song, Y.J.S., P.; Henry, L. L.; Sun, B. H., Mechanisms of structure and performance controlled thin film composite membrane formation via interfacial polymerization process. Journal of Membrane Science, 2005. 251(1–2): p. 67 –79.
  • Jian, K., P.N. Pintauro, and R. Ponangi, Separation of dilute organic/water mixtures with asymmetric poly(vinylidene fluoride) membranes. Journal of Membrane Science, 1996. 117(1–2): p. 117 –133.
  • Anderson, M.R.M., B. R.; Reiss, H.; Kaner, R. B., Conjugated Polymer-Films for Gas Separations. Science, 1991. 252(5011): p. 1412 –1415.
  • Geise, G.M.P., H. B.; Sagle, A. C.; Freeman, B. D.; McGrath, J. E., Water permeability and water/salt selectivity tradeoff in polymers for desalination. Journal of Membrane Science, 2011. 369(1–2): p. 130 –138.
  • Robeson, L.M., The upper bound revisited. Journal of Membrane Science, 2008. 320(1–2): p. 390 –400.
  • Robeson, L.M., Correlation of Separation Factor Versus Permeability for Polymeric Membranes. Journal of Membrane Science, 1991. 62(2): p. 165 –185.
  • Verweij, H., Inorganic membranes. Current Opinion in Chemical Engineering, 2012. 1(2): p. 156 –162.
  • Zimmerman, C.M., A. Singh, and W.J. Koros, Tailoring mixed matrix composite membranes for gas separations. Journal of Membrane Science, 1997. 137(1–2): p. 145 –154.
  • Vu, D.Q., W.J. Koros, and S.J. Miller, Mixed matrix membranes using carbon molecular sieves: I. Preparation and experimental results. Journal of Membrane Science, 2003. 211(2): p. 311 –334.
  • Breck, D., et al., Crystalline zeolites. I. The properties of a new synthetic zeolite, type A. Journal of the American chemical society, 1956. 78(23): p. 5963 –5972.
  • Moore, T.T., et al., Hybrid membrane materials comprising organic polymers with rigid dispersed phases. Aiche Journal, 2004. 50(2): p. 311 –321.
  • Cui, J.Y., et al., Preparation and application of zeolite/ceramic microfiltration membranes for treatment of oil contaminated water. Journal of Membrane Science, 2008. 325(1): p. 420 –426.
  • Mosleh, S., et al., Zeolite filled polyimide membranes for dehydration of isopropanol through pervaporation process. Chemical Engineering Research & Design, 2012. 90(3A): p. 433 –441.
  • Vatanpour, V., et al., TiO2 embedded mixed matrix PES nanocomposite membranes: Influence of different sizes and types of nanoparticles on antifouling and performance. Desalination, 2012. 292: p. 19 –29.
  • Dai, Y., et al., Ultem((R))/ZIF-8 mixed matrix hollow fiber membranes for CO2/N-2 separations. Journal of Membrane Science, 2012. 401: p. 76 –82.
  • Guan, H.M., et al., Poly(vinyl alcohol) multilayer mixed matrix membranes for the dehydration of ethanol-water mixture. Journal of Membrane Science, 2006. 268(2): p. 113 –122.
  • Lue, S.J., et al., Diffusivity enhancement of water vapor in poly(vinyl alcohol)-fumed silica nano-composite membranes: Correlation with polymer crystallinity and free-volume properties. Journal of Membrane Science, 2008. 325(2): p. 831 –839.
  • Sairam, M., et al., Novel dense poly(vinyl alcohol)-TiO2 mixed matrix membranes for pervaporation separation of water-isopropanol mixtures at 30 degrees C. Journal of Membrane Science, 2006. 281(1–2): p. 95 –102.
  • Jiang, L.Y., et al., Fundamental understanding of nano-sized zeolite distribution in the formation of the mixed matrix single- and dual-layer asymmetric hollow fiber membranes. Journal of Membrane Science, 2005. 252(1–2): p. 89 –100.
  • Jeong, B.H., et al., Interfacial polymerization of thin film nanocomposites: A new concept for reverse osmosis membranes. Journal of Membrane Science, 2007. 294(1–2): p. 1 –7.
  • Chmelik, C., et al., A new view of diffusion in nanoporous materials. Chemie Ingenieur Technik, 2010. 82(6): p. 779 –804.
  • Turgman-Cohen, S., et al., Molecular Dynamics of Equilibrium and Pressure-Driven Transport Properties of Water through LTA-Type Zeolites. Langmuir, 2013. 29(40): p. 12389 –12399.
  • Pendergast, M.M. and E.M.V. Hoek, A review of water treatment membrane nanotechnologies. Energy & Environmental Science, 2011. 4(6): p. 1946 –1971.
  • Lind, M.L., et al., Tailoring the Structure of Thin Film Nanocomposite Membranes to Achieve Seawater RO Membrane Performance. Environmental Science & Technology, 2010. 44(21): p. 8230 –8235.
  • Lind, M.L., et al., Effect of mobile cation on zeolite-polyamide thin film nanocomposite membranes. Journal of Materials Research, 2009. 24(05): p. 1624 –1631.
  • Mulder, M., Basic principles of membrane technology. 2nd ed1996, Dordrecht; Boston: Kluwer Academic. 564 p.
  • Lin, N.H., et al., Polymer surface nano-structuring of reverse osmosis membranes for fouling resistance and improved flux performance. Journal of Materials Chemistry, 2010. 20(22): p. 4642 –4652.
  • Baker, R.W., Membrane Transport Theory, in Membrane Technology and Applications2004, John Wiley & Sons, Ltd. p. 15 –87.
  • Louie, J.S., I. Pinnau, and M. Reinhard, Effects of surface coating process conditions on the water permeation and salt rejection properties of composite polyamide reverse osmosis membranes. Journal of Membrane Science, 2011. 367(1–2): p. 249 –255.
  • Dalwani, M., et al., Effect of pH on the performance of polyamide/polyacrylonitrile based thin film composite membranes. Journal of Membrane Science, 2011. 372(1–2): p. 228 –238.
  • Ghosh, A.K. and E.M.V. Hoek, Impacts of support membrane structure and chemistry on polyamide-polysulfone interfacial composite membranes. Journal of Membrane Science, 2009. 336(1-2): p. 140 –148.
  • Liu, M.H., et al., Thin-film composite membrane formed by interfacial polymerization of polyvinylamine (PVAm) and trimesoyl chloride (TMC) for nanofiltration. Desalination, 2012. 288: p. 98 –107.
  • Wei, J., et al., Influence of monomer concentrations on the performance of polyamide-based thin film composite forward osmosis membranes. Journal of Membrane Science, 2011. 381(1–2): p. 110 –117.
  • Chung, T.S., S.K. Teoh, and X.D. Hu, Formation of ultrathin high-performance polyethersulfone hollow-fiber membranes. Journal of Membrane Science, 1997. 133(2): p. 161 –175.
  • de Vos, R.M. and H. Verweij, High-selectivity, high-flux silica membranes for gas separation. Science, 1998. 279(5357): p. 1710 –1711.
  • Kawakami, H., M. Mikawa, and S. Nagaoka, Gas permeability and selectivity through asymmetric polyimide membranes. Journal of Applied Polymer Science, 1996. 62(7): p. 965 –971.
  • Kusakabe, K., et al., Formation of a Y-type zeolite membrane on a porous alpha-alumina tube for gas separation. Industrial & Engineering Chemistry Research, 1997. 36(3): p. 649 –655.
  • Xu, X.C., et al., Synthesis of a high-permeance NaA zeolite membrane by microwave heating. Advanced Materials, 2000. 12(3): p. 195 -+.
  • Guillen, G.R., et al., Pore-structure, hydrophilicity, and particle filtration characteristics of polyaniline-polysulfone ultrafiltration membranes. Journal of Materials Chemistry, 2010. 20(22): p. 4621 –4628.
  • Li, W.X., W.H. Xing, and N.P. Xu, Modeling of relationship between water permeability and microstructure parameters of ceramic membranes. Desalination, 2006. 192(1–3): p. 340 –345.
  • Chakrabarty, B., A.K. Ghoshal, and M.K. Purkait, SEM analysis and gas permeability test to characterize polysulfone membrane prepared with polyethylene glycol as additive. Journal of Colloid and Interface Science, 2008. 320(1): p. 245 –253.
  • Pinnau, I., et al., Gas Permeation through Composite Membranes. Journal of Membrane Science, 1988. 37(1): p. 81 –88.
  • Henis, J.M.S. and M.K. Tripodi, Composite Hollow Fiber Membranes for Gas Separation - the Resistance Model Approach. Journal of Membrane Science, 1981. 8(3): p. 233 –246.
  • Louie, J.S., et al., Effects of polyether-polyamide block copolymer coating on performance and fouling of reverse osmosis membranes. Journal of Membrane Science, 2006. 280(1–2): p. 762 –770.
  • Hashemifard, S.A., A.F. Ismail, and T. Matsuura, A new theoretical gas permeability model using resistance modeling for mixed matrix membrane systems. Journal of Membrane Science, 2010. 350(1–2): p. 259 –268.
  • Pope, C., Nucleation and growth theory in zeolite synthesis. Microporous and mesoporous materials, 1998. 21(4): p. 333 –336.
  • Soroush, A., et al., Interfacially polymerized polyamide thin film composite membranes: Preparation, characterization and performance evaluation. Desalination, 2012. 287(0): p. 310 –316.
  • Dong, H., et al., Preparation and characterization of surface-modified zeolite-polyamide thin film nanocomposite membranes for desalination. Desalination and Water Treatment, 2011. 34(1–3): p. 6 –12.
  • Dong, G., H. Li, and V. Chen, Challenges and opportunities for mixed-matrix membranes for gas separation. Journal of Materials Chemistry A, 2013. 1(15): p. 4610 –4630.
  • Merkel, T.C., et al., Ultrapermeable, Reverse-Selective Nanocomposite Membranes. Science, 2002. 296(5567): p. 519 –522.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.