86
Views
4
CrossRef citations to date
0
Altmetric
Adsorption

Adsorption of Thiophenic Compounds by OFG-Tailored Fiber and Activated Carbons

&
Pages 1940-1951 | Received 30 Jun 2014, Accepted 02 Feb 2015, Published online: 21 Aug 2015

REFERENCES

  • Song, C. (2003) An overview of new approaches to deep desulfurization for ultraclean gasoline, diesel fuel and jet fuel. Catal. Today. 86: 211.
  • Xiao, J.; Bian, G.; Zhang, W.; Zhong, L. (2010) Adsorption of dibenzothiophene on Ag/Cu/Fe-supported dctivated carbons prepared by ultrasonic-assisted impregnation. J. Chem. Eng. Data. 55: 5818.
  • Lorentz, V.; Geantet, C.; Yoshimura, C.; Laurenti, Y.; Vrinat, D. (2006) Kinetics and mechanism of liquid-phase alkylation of 3-methylthiophene with 2-methyl-2-butene over a solid phosphoric acid. Appl. Catal. B. 64: 254.
  • Ania, C. O.; Bandosz, T. J. (2006) Metal-loaded polystyrene-based activated carbonsas dibenzothiophene removal media via reactive adsorption. Carbon. 44: 2404.
  • Dai, W.; Hu, J.; Zhou, L.; Li, S. Hu, X.; Huang, H (2013) Removal of dibenzothiophene with composite adsorbent MOF-5/Cu(I). Energy Fuels. 27:816.
  • Haji, S.; Erky, C. (2003) Removal of dibenzothiophene from model diesel by adsorption on carbon aerogels for fuel cell application. Ind. Eng. Chem. Res. 42: 6933.
  • Zhou, A.; Ma, X.; Song, C. (2009) Effects of oxidative modification of carbon surface on the adsorption of sulfur compounds in diesel fuel. Appl. Catal. B. 87: 190.
  • Rodríguez-Reinoso, F. (1998) the role of carbon materials in heterogeneous catalysis. Carbon. 36: 159.
  • Sano,Y.; Choi, K. H.; Korai, Y.; Mochida, I. (2004) Adsorptive removal of sulfur and nitrogen species from a straight run gas oil over activated carbons for its deep hydrodesulfurization. Appl. Catal. B. 49: 219.
  • Sano, Y.; Sugahara, K.; Choi, K. H.; Korai,Y.; Mochida, I. (2005) Two-step adsorption process for deep desulfurization of diesel. Fuel. 84: 903.
  • Kim, J. H.; Ma, X.; Zhou, A.; Song, C. (2006) Ultra-deep desulfurization and denitrogenation of diesel fuel by selective adsorption over three different adsorbents: A study on adsorptive selectivity and mechanism. Catal. Today. 111: 74.
  • Ma, X.; Sprague, M.; Song, C. (2005) Deep desulfurization of gasoline by selective adsorption over nickel-based adsorbent for fuel cell applications. Ind. Eng. Chem. Res. 44: 5768.
  • Salem, A. B. S. H. (1994) Naphtha desulfurization by adsorption. Ind. Eng. Chem. Res. 33: 336.
  • Salem, A. B. S. H. (1997) Removal of sulfur compounds from naphtha solutions using solid adsorbents. Chem. Eng. Technol. 20: 342.
  • Yu, M.; Li, Z.; Xia, Q.; Xi, H.; Wan, S. (2007) Desorption activation energy of dibenzothiophene on the activated carbons modified by different metal salt solutions. Chem. Eng. J. 132: 233.
  • Bandosz, T. J.; Seredych, M. (2009) Selective adsorption of dibenzothiophenes on activated carbons with Ag, Co, and Ni species deposited on their surfaces. Energy Fuels. 23: 3737.
  • Hernandez, S. P.; Fino, D.; Russo, N. (2010) High performance sorbents for diesel oildesulfurization. Chem. Eng. Sci. 65: 603.
  • Moosavi, E. S.; Dastgheib, S. A.; Karimzadeh, R. (2012) Adsorption of Thiophenic Compounds from Model Diesel Fuel Using Copper and Nickel Impregnated Activated Carbons. Energies. 5: 4233.
  • Seredych, M.; Bandosz,T. J. (2011) Investigation of the enhancing effects of sulfur and/or oxygen functional groups of nanoporous carbons on adsorption of dibenzothiophenes. Carbon. 49: 1216.
  • Yu, M.; Li, Z.; Ji, Q.; Wang, S.; Su, D.; Lin, Y. S. (2009) Effect of thermal oxidation of activated carbon surface on its adsorption towards dibenzothiophene. Chem. Eng. J. 148: 242.
  • Seredych, M.; Deliyanni, E.; Bandosz, T. J. (2010) Role of microporosity and surface chemistry in adsorption of 4,6-dimethyldibenzothiophene on polymer-derived activated carbons. Fuel. 89:1499.
  • Dai, W.; Gong, R.; Hu, J.; Zhou, L. M. (2014) Thiophene capture by an oxidation-modified activated carbon derived from bergamot. Separ. Sci. Technol. 49: 367.
  • Yu, G. X.; Li, J. B.; Zhou, X. L.; Chen, C. L.; Wang, J. A. (2010) Adsorption of dibenzothiophene on transition metals loaded activated carbon. Adv. Mater. Res. 132: 141.
  • Sano,Y.; Choi, K. H.; Korai, Y.; Mochida, I. (2004) Selection and further activation of activated carbons for removal of nitrogen species in gas oil as a pretreatment for Its deep hydrodesulfurization. Energy Fuels. 18: 644.
  • Seredych, M.; Bandosz, T. J. (2010) Adsorption of dibenzothiophenes on nanoporous carbons: identification of specific adsorption sites governing capacity and selectivity. Energy Fuels. 24: 3352.
  • Seredych, M.; Bandosz, T. J. (2007) Template-derived mesoporous carbons with highly dispersed transition metals as media for the reactive adsorption of dibenzothiophen. Langmuir. 23: 6033.
  • Yu, C.; Qiu, J. S.; Sun, Y. F.; Li, X. H.; Chen, G.; Zhao, Z. B. (2008) Adsorption removal of thiophene and dibenzothiophene from oils with activated carbon as adsorbent: Effect of surface chemistry. J. Porous Mater. 15: 151.
  • Jiang, Z.; Liu, Y.; Sun, X.; Tian, F.; Liang, F. S. C.; You, W.; Han, C.; Li, C. (2003) Activated carbons chemically modified by concentrated H2SO4 for the adsorption of the pollutants from wastewater and the dibenzothiophene from fuel oils. Langmuir. 19: 731.
  • Bandosz, T. J.; Ania, C. O. (2005) Importance of structural and chemical heterogeneity of activated carbon surfaces for adsorption ofdibenzothiophene. Langmuir. 21: 7752.
  • Ania, C. O.; Parra, J. B.; Arenillas, A.; Rubiera, F.; Bandosz, T. J.; Pis, J. J. (2007) On the mechanism of reactive adsorption of dibenzothiophene on organic wastederived carbon. Appl. Surf. Sci. 253: 5899.
  • Yang, Y. X.; Lu, H.; Ying, P.; Jiang, Z.; Li, C. (2007) Selective dibenzothiophene adsorption on modified activated carbon. Carbon. 45: 3042.
  • Deliyanni, E.; Seredych, M.; Bandosz, T. J. (2009) Interactions of 4,6-dimethyldibenzothiophene with the surface of activated carbons. Langmuir, 25: 9302.
  • Seredych, M.; Lison, J.; Jans, U.; Bandosz, T. J. (2009) Textural and chemical factors affecting adsorption capacity of activated carbon in highly efficient desulfurization of diesel fuel. Carbon. 47: 2491.
  • Alhamed, Y. A.; Bamufleh, H. S. (2009) Sulfur removal from model diesel fuel using granular activated carbon from dates’stones activated by ZnCl2. Fuel. 88: 87.
  • Figueiredo, J. L.; Pereira, M. F. R.; Freitas, M. M. A. (1999) Modification of the surface chemistry of activated carbons. Carbon. 37: 1379.
  • Puente, G.; Pis, J. J.; Menhdez, J. A.; Grange, P. (1997) Thermal stability of oxygenated functions in activated carbons. J. Anal. Appl. Pyrolysis. 43: 125.
  • Thomas, K. M.; Jia, Y. F. (2000) Adsorption of cadmium ions on oxygen surface sites in activated carbon. Langmuir. 16: 1114.
  • Wang, J.; Xub, F.; Xiec,W. J.; Meib, Z. J.; Zhanga,Q. Z.; Caib, J.; Cai, W. M. (2009) The enhanced adsorption of dibenzothiophene onto cerium/nickel-exchanged zeolite y. J. Hazard. Mater. 163: 538.
  • Pradhan, B. K.; Sandle, N. K. (1999) Effect of different oxidizing agent treatments on the surface properties of activated carbons. Carbon. 37: 1323.
  • O’Reilly, J. M.; Mosher, R. A. (1983) Functional groups in carbon black by FTIR spectroscopy. Carbon. 21: 47.
  • El-Hendawy, A. N. A. (2003) Influence of HNO3 oxidation on the structure and adsorptive properties of corncob-based activated carbon. Carbon. 41: 713.
  • Boehm, H. P. (2002) Surface oxides on carbon and their analysis: a criticalassessment. Carbon. 40: 145.
  • Marty, I.; Ishizaki, C. (1981) Surface oxide structures on a commercial activated carbon. Carbon. 19: 409.
  • Biniak, S.; Pakuła, M.; Szyman, G. S.; SÄwiaütkowski, A. (1999) Effect of activated carbon surface oxygen- and/or nitrogen containing groups on adsorption of copper(II) ions from aqueous solution. Langmuir. 15: 6117.
  • Castilla, C. M.; Ramo´n, M. V. L.; Mar´ın, F. C. (2000) Changes in surface chemistry of activated carbons by wet oxidation. Carbon. 38: 1995–2001.
  • Lucas, C. H.; Lopezeinado, A. J.; Gonzalez, J. D. D. L.; Cervantes, M. L. R.; Martranda, R. M. (1995) Study of oxygen-contanning groups in a series of graphite oxides: Physical and chemical characterization. Carbon. 33: 1585.
  • Terzyk, A. P. (2001) The influence of activated carbon surface chemical composition on the adsorption of acetaminophen (paracetamol) invitro part II. TG, FTIR, and XPS analysis of carbons and thetemperature dependence of adsorption kinetics at the neutral pH. Colloids Surf, A. 177: 23.
  • Choma, J.; Mortka, B. W.; Jaroniec, M.; Li, Z. (1999) Monitoring changes in surface and structural properties of porous carbons modified by different oxidizing agents. J. Colloid Interface Sci. 214: 438.
  • Wang, Q.; Liang, X.; Qiao, W.; Liu,C.; Liu, X.; Zhan, L.; Ling, L. (2009) Preparation of polystyrene-based activated carbon spheres with high surface area and their adsorption to dibenzothiophene. Fuel Process. Technol. 9: 381.
  • Giles, C. H.; Macewans, T. H.; Nakhwa, N.; Smith, D. (1960) Studies in adsorption. part XI. A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specificsurface areas ofsolids. J. Chem. Soc. 3973.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.