141
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Sol-Gel Glass-Encapsulated Crown Ethers for the Separation and Preconcentration of Strontium from Acidic Media

, &
Pages 2873-2880 | Received 18 Nov 2014, Accepted 18 Aug 2015, Published online: 08 Jan 2016

REFERENCES

  • Weiss, H. V., Shipman, W. H. (1957) Separation of strontium from calcium with potassium rhodizonate. Anal. Chem., 29: 1764–1766.
  • Fourie, H. O., Ghijels, J. P. (1969) Radiostrontium in biological material: A precipitation and extraction procedure eliminating the use of fuming nitric acid. Health Phys., 17: 685–689.
  • Butler, F. E. (1963) Separation of calcium and strontium by liquid ion-exchange. Anal. Chem., 35: 2069–2071.
  • Yashkin, V. V., Myasoedov, B. F., Vilkov, O. M., Tuzova, A. M., Fedorova, A. T., Rodionova, I. M. (1989) Use of dicyclohexyl-​18-​crown-​6 for selective extraction of radioactive strontium from water. Radiokhimiya, 31: 67–71.
  • Velten, R. J. (1966) Resolution of 89Sr and 90Sr in environmental media by an instrumental technique. Nucl. Instrum. Methods, 42: 169–172.
  • Talvitie, N. A., Demint, R. J. (1965) Radiochemical determination of strontium-90 in water using ion exchange. Anal. Chem., 37: 1605–1607.
  • Cahill, D. F., Lindsey, G. J. (1966) Determination of strontium-90 in urine by anion exchange. Anal. Chem., 38: 639–640.
  • Noshkin, V. E., Mott, N. S. (1967) Separation of strontium from large amounts of calcium, with application to radiostrontium analysis. Talanta, 14: 45–51.
  • Porter, C. R., Khan, B., Carter, M. W., Vehnberg, G. L., Pepper, E. W. (1967) Determination of radiostrontium in food and other environmental samples. Environ. Sci. Technol., 1: 745–750.
  • Ibbett, R. D. (1967) Determination of strontium-90 in environmental samples by ion exchange and preferential chelation techniques. Analyst, 92: 417–422.
  • Dietz, M. L. (2003) Recent progress in the development of extraction chromatographic methods for radionuclide separation and preconcentration. In Radioanalytical Methods in Interdisciplinary Research: Fundamentals in Cutting Edge Applications; Laue, C. A., Nash, K. L., Eds.; American Chemical Society: Washington, DC, 160–176.
  • Horwitz E. P., Dietz, M. L., Chiarizia, R., Diamond, H., Maxwell, S. L., Nelson, M. R. (1995) Separation and preconcentration of actinides by extraction chromatography using a supported liquid anion exchanger: Application to the characterization of high-level nuclear waste solutions. Anal. Chim. Acta, 310: 63–78.
  • Horwitz E. P., Chiarizia, R., Dietz, M. L. (1997) DIPEX: A new extraction chromatographic material for the separation and preconcentration of actinides from aqueous solution. React. Funct. Polym., 33: 25–36.
  • Kim, G., Burnett, C. W., Horwitz, E. P. (2000) Efficient preconcentration and separation of actinide elements from large soil and sediment samples. Anal. Chem., 72: 4882–4887.
  • Kremliakova, N. Y., Novikov, A. P., Myasoedov, B. F. (1990) Extraction chromatographic separation of radionuclides of strontium, cesium, and barium with the use of TVEX-DCH18C6. J. Radioanal. Nucl. Chem. Lett., 145: 23–28.
  • Horwitz, E. P., Dietz, M. L., Fisher, D. E. (1991) Separation and preconcentration of strontium from biological, environmental, and nuclear waste samples by extraction chromatography using a crown ether. Anal. Chem., 63: 522–525.
  • Horwitz, E. P., Chiarizia, R., Dietz, M. L. (1992) A novel strontium-selective extraction chromatographic resin. Solv. Extr. Ion Exch., 10: 313–336.
  • Dietz, M. L., Yaeger, J., Sajdak, L. R., Jensen, M. P. (2005) Characterization of an improved extraction chromatographic material for the separation and preconcentration of strontium from acidic media. Sep. Sci. Technol., 40: 349–366.
  • Dietz, M. L., Ensor, D. D., Harmon, B., Seekamp, S. (2006) Separation and preconcentration of cesium from acidic media by extraction chromatography. Sep. Sci. Technol., 41: 2183–2204.
  • Dietz, M. L., Horwitz, E. P., Bond, A. H. (1999) Extraction chromatography: Progress and opportunities. In Metal Ion Separation and Preconcentration: Progress and Opportunities; Bond, A. H., Dietz, M. L., Rogers, R. D., Eds.; American Chemical Society: Washington, DC, pp. 234–250.
  • Akaiwa, H., Kowamoto, H., Nakata, N., Ozeki, Y. (1975) Ion exchange based on complexation using a chelating agent-loaded resin. Chem. Lett., 10: 1049–1050.
  • Tanaka, H., Chikuma, M., Harada, A., Ueda, T., Yube, S. (1976) A new chelate-forming resin with dithizone functional group prepared by the conversion of an anion-exchange resin. Talanta 23: 489–491.
  • Chikuma, M., Nakayama, M., Tanaka, T., Tanaka, H. (1979) A new chelate-forming resin bearing mercapto and azo groups. Talanta 26: 911–912.
  • Chikuma, M., Nakayama, M., Itoh, T., Tanaka, H., Itoh, K. (1980) Chelate-forming resins prepared by modification of anion-exchange resins. Talanta 27: 807–810.
  • Nakayama, M., Chikuma, M., Tanaka, H., Tanaka, T. (1982) A Chelate-forming resin bearing mercapto and azo groups and its application to the recovery of mercury (II). Talanta 29: 503–506.
  • Lee, K. S., Lee, W., Lee, D. W. (1978) Selective separation of metal ions by a chelating agent-loaded anion exchanger. Anal. Chem., 50: 255–258.
  • Sarzanini, C., Mentasti, E., Porta, V., Gennaro, M. C. (1987) Comparison of anion-exchange methods for preconcentration of trace aluminum. Anal. Chem. 59: 484–486.
  • Warshawsky, A., Strikovsky, A. G., Jerabek, K., Cortina, J. L. (1997) Solvent-​impregnated resins via acid-​base interaction of poly(4-​vinylpyridine) resin and di(2-​ethylhexyl) dithiophosphoric acid. Solvent Extr. Ion Exch., 15: 259–283.
  • Warshawsky, A., Cortina, J. L., Aguilar, M., Jerabek, K. (2001) New developments in impregnated resins. An overview. In Solvent Extraction for the 21st Century (Proceedings of ISEC ’99), Vol. 1; Cox, M., Hidalgo, M., Valiente, M., Eds; Society of Chemical Industry: London, pp. 1267–1272.
  • Khalifa, A. (1998) Selective separation of uranium using Alizarin Red S (ARS)-modified anion-exchange resin or by flotation of U-ARS chelate. Sep. Sci. Technol., 33: 2123–2141.
  • Kauczor, H. W., Meyer, A. (1978) Structure and properties of Levextrel resins. Hydrometallurgy 3: 65–73.
  • Zhang, A., Xiao, C., Liu, Y., Hu, Q., Chen, C., Kuraoka, E. (2010) Preparation of macroporous silica-based crown ether materials for strontium separation. J. Porous Mater., 17: 153–161.
  • Zhang, A., Xiao, C., Chai, Z. (2011) Development of silica-based supramolecular recognition materials in reprocessing of nuclear spent fuel. Progress in Chem., 23: 1355–1365.
  • Zhang, A., Xiao, C., Kuraoka, E., Kumagai, M. (2007) Preparation of a novel silica-based DtBuCH18C6-impregnated polymer composite modified by tri-n-butyl phosphate and its application in chromatographic partitioning of strontium from high-level waste. Ind. Eng. Chem. Res., 46: 2164–2171.
  • Zhu, L. L., Guo, L., Zhang, Z. J., Chen, J., Zhang, S. M. (2012) Preparation of supported ionic liquids (SILs) and their application in rare metal separation. Sci. China-Chem., 55: 1479–1487.
  • Lev, O., Tsionsky, M., Rabinovich, L., Glezer, V., Pankratov, I., Gun, J. (1995) Organically modified sol-gel sensors. Anal. Chem., 67 (1): 22–30.
  • Yost, T. L., Jr., Fagan, B. C., Allain, L. R., Barnes, C. E., Dai, S., Sepaniak, M. J., Xue, Z. (2000) Crown ether-doped sol-gel materials for strontium (II) separation. Anal. Chem., 72: 5516–5519.
  • Makote, R. D., Luo, H., Dai, S. (2002) Synthesis of ionic liquid and silica composites doped with dicyclohexyl-18-crown-6 for sequestration of metal ions. In Clean Solvents: Alternative Media for Chemical Reactions and Processing; Abraham, M. A., Moens, L. Eds.; American Chemical Society: Washington, DC, pp. 26–33.
  • Klein, L. C., Woodman, R. H. (1995) Porous silica by the sol-gel process. Key Eng. Mater., 15: 109–124.
  • Walcarius, A., Collinson, M. M. (2009) Analytical chemistry with silica sol-gels: Traditional routes to new materials for chemical analysis. Ann. Rev. Anal. Chem., 2: 121–143.
  • Dai, S., Burleigh, M. C., Ju, Y. H., Gao, H. J. (2000) Hierarchically imprinted sorbents for the separation of metal ions. J. Am. Chem. Soc., 122: 992–993.
  • Lu, Y. K., Yan, X. P. (2004) An imprinted organic-inorganic hybrid sorbent for selective separation of cadmium from aqueous solution. Anal. Chem., 76: 453–457.
  • Diaz-Garcia, M. E., Laino, R. B. (2005) Molecular imprinting in sol-gel materials: Recent developments and applications. Microchim. Acta, 149: 19–36.
  • Lev, O. (1992) Diagnostic applications of organically doped sol-gel porous glass. Analusis 20: 543–553.
  • Avnir, D. (1995) Organic chemistry within ceramic matrices: Doped sol-gel materials. Acc. Chem. Res., 28: 328–334.
  • Lan, E. H., Dave, B. C., Fukuto, J. M., Bruce, D., Zink, J. I. (1999) Synthesis of sol-gel encapsulated heme proteins with chemical sensing properties. J. Mater. Chem., 9: 45–53.
  • Collinson, M. M. (1999) Sol-gel strategies for the preparation of selective materials for chemical analysis. Crit. Rev. Anal. Chem., 29: 289–311.
  • Collinson, M. M. (1998) Analytical applications of organically modified silicates. Mikrochim. Acta, 129: 149–165.
  • Wolfbeis, O. S., Reisfeld, R., Oehme, I. (1996) Sol-gels and chemical sensors. Struct. Bonding, 85: 51–98.
  • Lin, J., Brown, C. W. (1997) Sol-gel glass as a matrix for chemical and biochemical sensing. Trends Anal. Chem., 16: 200–210.
  • Allain, L. R., Sorasaenee, K., Xue, Z. (1997) Doped thin-film sensors via a sol-gel process for high acidity determination. Anal. Chem., 69: 3076–3080.
  • Allain, L. R., Xue, Z. (2000) Optical sensors for the determination of concentrated hydroxide. Anal. Chem., 72: 1078–1083.
  • Jimenez-Morales, A., Galvan, J. C., Aranda, P., Ruiz-Hitzky, E. (1998) Hybrid organic-inorganic electrode-membranes based on organo-polysiloxane/macrocycle systems. Mater. Res. Soc. Symp. Proc., 519: 211–216.
  • Kimura, K., Sunagawa, T., Yokoyama, M. (1997) Applications of sol-gel-derived membranes to neutral carrier-type ion-sensitive field-effect transistors. Anal. Chem., 69: 2379–2383.
  • Saad, B., Chong, C. C., Ali, A. S. M., Bari, M. F., Rahman, I. A., Mohamad, N., Saleh, M. I. (2006) Seelective removal of heavy metal ions using sol-gel immobilized and SPE-coated thiacrown ethers. Anal. Chim. Acta, 555:146–56.
  • http://www.dowwaterandprocess.com/en/products/a/amberchrom.cg71m (accessed on November 10, 2014).
  • Adem, Z., Guenneau, F., Springuel-Huet, M., Gedeon, A., Iapichella, J., Cacciaguerra, T., Galarneau, A. (2012) Diffusion properties of hexane in pseudomorphic MCM-41 mesoporous silicas explored by pulsed field gradient NMR. J. Phys. Chem., 116: 13749–13759.
  • Pawlak, A. J., Dietz, M. L. (2014) Thermal properties of macrocyclic polyethers: Implications for the design of crown ether-based ionic liquids. Sep. Sci. Technol., 49: 1–9.
  • Lin, J., Liu, D. (2000) Removal of zinc ions by sol-gel silica doped with Cibacron Blue. J. Sol Gel Sci. Technol., 18: 85–90.
  • Khan, A., Mahmood, F., Khokhar, M.Y., Ahmed, S. (2006) Functionalized sol-gel material for extraction of mercury (II). React. Funct. Polym., 66: 1014–1020.
  • Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C., Beck, J. S. (1992) Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 359: 710–712.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.