214
Views
2
CrossRef citations to date
0
Altmetric
Cyclone

The influence of a plate vortex limiter on cyclone separator

Pages 1566-1578 | Received 17 Jul 2015, Accepted 09 Mar 2016, Published online: 18 May 2016

References

  • Chuah, T.G.; Gimbun, J.; Choong, T.S.Y. (2006) A CFD study of the effect of cone dimensions on sampling aerocyclones performance and hydrodynamics. Powder Technology, 162: 126.
  • Avci, A.; Karagoz, I. (2003) Effects of flow and geometrical parameters on the collection efficiency in cyclone separators. Journal of Aerosol Science, 34: 937.
  • Santosh, R.; Gupta, K.; Ray, M.B. (2000) Multiobjective optimization of cyclone separators using genetic algorithm. Industrial & Engineering Chemistry Research, 39: 4272.
  • Elsayed, K.; Lacor, C. (2011) Modeling, analysis and optimization of aircyclones using artificial neural network, response surface methodology and CFD simulation approaches. Powder Technology, 212: 115.
  • Gronald, G.; Derksen, J.J. (2011) Simulating turbulent swirling flow in a gas cyclone: A comparison of various modeling approaches. Powder Technology, 205: 160.
  • Derksen, J.J.; van den Akker, H.E.A.; Sundaresan, S. (2008) Two-way coupled large-eddy simulations of the gas-solid flow in cyclone separators. AIChE Journal, 54 (4): 872.
  • Yoshida, H.; Nishimura, Y.; Fukui, K.; Yamamoto, T. (2010) Effect of apex cone shape on fine particle classification of gas-cyclone. Powder Technology, 204: 54.
  • Yoshida, H.; Kwan-Sik, Y.; Fukui, K.; Akiyama, S.; Taniguchi, S. (2003) Effect of apex cone height on particle classification performance of a cyclone separator. Advanced Powder Technology, 14 (3): 263.
  • Yoshida, H. (2013) Effect of apex cone shape and local fluid flow control method on fine particle classification of gas-cyclone. Chemical Engineering Science, 85: 55.
  • Avci, A.; Karagoz, I.; Surmen, A. (2013) Development of a new method for evaluating vortex length in reversed flow cyclone separators. Powder Technology, 235: 460.
  • Kabsch, P. (1992) Dedusting and Dust Collectors. (in Polish). Wydawnictwa Naukowo-Techniczne Warszawa. (ISBN: 83-204-1562-4).
  • Hoffmann, A.C.; Stein, L.E. (2002) Gas Cyclones and Swirl Tubes. Springer Berlin Heidelberg New York. (ISBN: 978-3-540-43326-2).
  • Qiu, Y.; Deng, B.; Kim, C.N. (2012) Numerical study of the flow field and separation efficiency of a divergent cyclone. Powder Technology, 217: 231.
  • Xiang, R.; Park, S.H.; Lee, K.W. (2001) Effects of cone dimension on cyclone performance. Journal of Aerosol Science, 32: 549.
  • Elsayed, K.; Lacor, C. (2011) Numerical modeling of the flow field and performance in cyclones of different cone-tip diameters. Computers & Fluids, 51: 48.
  • Obermair, S.; Woisetschläger, J.; Staudinger, G. (2003) Investigation of the flow pattern in different dust outlet geometries of a gas cyclone by laser Doppler anemometry. Powder Technology, 138: 239.
  • Obermair, S.; Gutschi, C.; Woisetschläger, J.; Staudinger, G. (2005) Flow pattern and agglomeration in the dust outlet of a gas cyclone investigated by Phase Doppler Anemometry. Powder Technology, 156: 34.
  • Elsayed, K.; Lacor, C. (2012) The effect of the dust outlet geometry on the performance and hydrodynamics of gas cyclones. Computers & Fluids, 68: 134.
  • Kaya, F.; Karagoz, I. (2009) Numerical investigation of performance characteristics of a cyclone prolonged with a dipleg. Chemical Engineering Journal, 151: 39.
  • Krambrock, W. (1971) Die Berechnung des Zyklonabscheiders und praktische Gesichtspunkte zur Auslegung-Teil 2. Aufbereitungs-Technik 10: 643.
  • Muschelknautz, E.; Greif, V. (1997) Cyclones and other gas-solids separators. In: Grace, J.R.; Avidan, A.A.; Knowlton, T.M. (Editors). Circulating Fluidized Beds. Blackie Academic & Professional London Weinheim New York Tokyo Melbourne Madras. (ISBN: 978-94-010-6530-6).
  • Pisarev, G.I.; Hoffmann, A.C. (2012) Effect of the ‘end of the vortex’ phenomenon on the particle motion and separation in a swirl tube separator. Powder Technology, 222: 101.
  • Kępa, A. (2012) The effect of a counter-cone position on cyclone performance. Separation Science and Technology, 47: 2250.
  • Kępa, A. (2013) The efficiency improvement of a large-diameter cyclone – The CFD calculations. Separation and Purification Technology, 118: 105.
  • Kępa, A. (2013) Experimental investigations of additional gas extraction inside a cyclone. Archives of Thermodynamics, 34 (4): 247.
  • Cortés, C.; Gil, A. (2007) Modeling the gas and particle flow inside cyclone separators. Progress in Energy and Combustion Science, 33: 409.
  • Xiang, R.B.; Lee, K.W. (2005) Numerical simulation of flow patterns in cyclones of different cone dimensions. Particle & Particle Systems Characterization, 22: 212.
  • Fluent 6.3 User’s Guide. (2006) Fluent 6.3 User's Guide. (2006) Fluent Inc. Lebanon NH03766.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.