555
Views
10
CrossRef citations to date
0
Altmetric
Adsorption

Synthesis of S-rich flower-like Fe2O3-MoS2 for Cr(VI) removal

, , , , &
Pages 1779-1786 | Received 13 Jul 2015, Accepted 11 Apr 2016, Published online: 17 Jun 2016

References

  • Zhang, Y.C.; Li, J.; Xu, H.Y. (2012) One-step in situ solvothermal synthesis of SnS2/TiO2 nanocomposites with high performance in visible light-driven photocatalytic reduction of aqueous Cr(VI). Applied Catalysis, B, 123–124:18–26.
  • Ohno, T.; Higo, T.; Saito, H.; Yuajn, S.S.; Jin, Z.Y.; Yang, Y.; Tsubota, T. (2015) Dependence of photocatalytic activity on aspect ratio of a brookite TiO2 nanorod and drastic improvement in visible light responsibility of a brookite TiO2 nanorod by site-selective modification of Fe3+ on exposed faces. Journal of Molecular Catalysis A: Chemical, 396: 261–267.
  • Veryasov, G.; Grilc, M.; Likozar, B.; Jesih, A. (2014) Hydrodeoxygenation of liquefied biomass on urchin-like MoS2. Catalysis Communications, 46: 183–186.
  • Hwang, H.; Kim, H.; Cho, J. (2011) MoS2 nanoplates consisting of disordered graphene-like layers for high rate lithium battery anode materials. Nano Letters, 11: 4826–4830.
  • Lopez-Sanchez, O.; Lembke1, D.; Kayci, M.; Radenovic, A.; Kis, A. (2013) Ultrasensitive photodetectors based on monolayer MoS2. Natural Nanotechnology, 8: 497–501.
  • Sheng, B.B.; Liu, J.S.; Li, Z.Q.; Wang, M.H.; Zhu, K.J.; Qiu, J.H.; Wang, J. (2015) Effects of excess sulfur source on the formation and photocatalytic properties of flower-like MoS2 spheres by hydrothermal synthesis. Materials Letters, 144: 153–156.
  • Zhou, W.J.; Hou, D.M.; Sang, Y.H.; Yao, S.H.; Zhou, J.; Li, G.Q.; Li, L.G.; Liu, H.; Chen, S.W. (2014) MoO2 Nanobelts@Nitrogen self-doped MoS2 nanosheets as effective electrocatalysts for hydrogen evolution reaction. Journal of Materials Chemistry A, 2: 11358–11364.
  • Fan, Y.Y.; Han, D.X.; Cai, B.; Ma, W.G.; Javed, M.; Gan, S.Y.; Wu, T.S.; Siddiq, M.; Dong, X.D.; Niu, L. (2014) Ce-/S-codoped TiO2/Sulfonated graphene for photocatalytic degradation of organic dyes. Journal of Materials Chemistry A, 2: 13565–13570.
  • Fu, Y.S.; Chen, H.Q.; Sun, X.Q.; Wang, X. (2012) combination of cobalt ferrite and graphene: high-performance and recyclable visible-light photocatalysis. Applied Catalysis B: Environmental, 111–112:280–287.
  • Choi, K.H.; Wang, K.K.; Shin, E.P.; Oh, S.L. Jung, J.S.; Kim, H.K.; Kim, Y.R. (2011) Water-Soluble magnetic nanoparticles functionalized with photosensitizer for photocatalytic application. Journal of Physical Chemistry C, 115: 3212–3219.
  • Hao, Q.Y.; Liu, S.A.; Yin, X.M.; Du, Z.F.; Zhang, M.; Li, L.M.; Wang, Y.G.; Wang, T.H.; Li, Q.H. (2011) flexible morphology-controlled synthesis of mesoporous hierarchical α-fe2o3 architectures and their gas-sensing properties. Crystal Engineering Communications, 13: 806–812.
  • Yanna, N.; Zhang, P.; Guo, Z.; Munroe, P.; Liu, H. (2008) Preparation of α-Fe2O3 Submicro-flowers by a Hydrothermal Approach and Their Electrochemical Performance in Lithium-ion Batteries. Electrochimica Acta, 53: 4213–4218.
  • Chemelewski, W.D.; Mabayoje, O.; Tang, D.; Rettie, A.J.; Buddie Mullins, C. (2016) Bandgap engineering of Fe2O3 with Cr - application to photoelectrochemical oxidation. Physical Chemistry Chemical Physics, 18: 1644–1648.
  • Qin, L.; Pan, X.X.; Wang, L.; Sun, X.P.; Zhang, G.L.; Guo, X.W. (2014) Facile preparation of mesoporous TiO2(B) nanowires with well-dispersed Fe2O3 nanoparticles and their photochemical catalytic behavior. Applied Catalysis B: Environmental, 150–151:544–553.
  • Xia, S.J.; Meng, Y.; Zhou, X.B.; Xue, J.L.; Pan, G.X.; Ni, Z.M. (2016) Ti/ZnO–Fe2O3 composite: Synthesis, characterization and application as a highly efficient photoelectrocatalyst for methanol from CO2 reduction. Applied Catalysis B: Environmental, 187: 122–133.
  • Zhu, L.P.; Xiao, H.M.; Liu, X.M.; Fu, S.Y. (2006) Template-free Synthesis and Characterization of Novel 3D Urchin-like α-Fe2O3 Superstructures. Journal of Materials Chemistry, 16: 1794–1797.
  • Zhu, L.P.; Bing, N.C.; Wang, L.L.; Jin, H.Y.; Liao, G.H.; Wang, L.J. (2012) self-assembled 3d porous flowerlike α-fe2o3 hierarchical nanostructures: synthesis, growth mechanism, and their application in photocatalysis. Dalton Transactions, 41: 2959–2965.
  • Mou, F.Z.; Guan, J.G.; Xiao, Z.D.; Sun, Z.G.; Shi, W.D.; Fan, X.A. (2011) Solvent-mediated synthesis of magnetic Fe2O3 chestnut-like Amorphous-core/γ-phase-shell Hierarchical Nanostructures with Strong As(V) removal capability. Journal of Materials Chemistry, 21: 5414–5421.
  • Yu, H.C.; Hsu, L.C.; Chang, T.H.; Li, Y.Y. (2012) A 3D α-Fe2O3 Nanoflake Urchin-like structure for electromagnetic wave absorption. Dalton Transactions, 41: 723–726.
  • Nagaraju, G.; Tharamani, C.N.; Chandrappa, G.T.; Livage, J. (2007) Hydrothermal synthesis of amorphous MoS2 nanofiber bundles via acidification of ammonium heptamolybdate tetrahydrate. Nanoscale Research Letters, 2: 461–468.
  • Wong, K.C.; Lu, X.; Cotter, J.; Eadie, D.T.; Wong, P.C.; Mitchell, K.A.R. (2008) Surface and friction characterization of MoS2 and WS2 third body thin films under simulated wheel/rail rolling-sliding Contact. Wear, 264: 526–534.
  • Zhao, W.; Liu, Y.; Wei, Z.B.; Yang, S.G.; He, H.; Sun, C. (2016) Fabrication of a novel p-n heterojunction photocatalyst n-BiVO4@p-MoS2 with core-shell structure and its excellent visible-light photocatalytic reduction and oxidation activities. Applied Catalysis B, 185: 242–252.
  • Mu, S.L.; Zhang, Y.; Zhai, J.P. (2009) Electrocatalysis of NADH oxidation by nanostructured poly(aniline-co-2-amino-4-hydroxybenzenesulfonic acid) and experimental evidence for the catalytic mechanism. Electrochemistry Communications, 11: 1960–1963.
  • Sen, U.K.; Mitra, S. (2013) High-Rate and high-energy-density lithium-ion battery anode containing 2D MoS2 nanowall and cellulose Binder. ACS Applied Materials Interfaces, 5: 1240–1247.
  • Min, S.X.; Lu, G.X. (2012) Sites for high efficient photocatalytic hydrogen evolution on a limited-layered MoS2 cocatalyst confined on graphene sheets―the role of graphene. Journal of Physical Chemistry C, 116: 25415–25424.
  • Maji, S.K.; Mukherjee, N.; Mondal, A.; Adhikary, B. (2012) Synthesis, characterization and photocatalytic activity of α-Fe2O3 nanoparticles. Polyhedron, 33: 145–149.
  • Shen, M.; Yan, Z.P.; Yang, L.; Du, P.W.; Zhang, J.Y.; Xiang, B. (2014) MoS2 nanosheet/TiO2 nanowire hybrid nanostructures for enhanced visible-light photocatalytic activities. Chemical Communications, 50: 15447–15449.
  • Zhu, H.; Du, M.L.; Zhang, M.; Zou, M.L.; Yang, T.T.; Wang, S.L.; Yao, J.M.; Guo, B.C. (2014) S-rich Single-layered MoS2 nanoplates embedded in n-doped carbon nanofibers: Efficient co-electrocatalysts for the hydrogen evolution reaction. Chemical Communications, 50: 15435–15438.
  • Zhao, X.; Zhu, H.; Yang, X.R. (2014) Amorphous carbon supported MoS2 Nanosheets as effective catalysts for electrocatalytic hydrogen evolution. Nanoscale, 6: 10680–10685.
  • Chen, Y.; Song, B.H.; Tang, X.S.; Lu, L.; Xue, J.M. (2012) One-step synthesis of hollow porous Fe3O4 beads–reduced graphene oxide composites with superior battery performance. Journal of Materials Chemistry, 22: 17656–17662.
  • Xia, C.X.; Jia, Y.; Tao, M.; Zhang, Q.M. (2013) Tuning the band gap of hematite α-Fe2O3 by sulfur doping. Physics Letters A, 377: 1943–1947.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.