575
Views
23
CrossRef citations to date
0
Altmetric
Membrane

Preparation of pyrrolidinium-based anion-exchange membranes for acid recovery via diffusion dialysis

, , , , , & show all
Pages 1881-1890 | Received 18 Jan 2016, Accepted 04 May 2016, Published online: 01 Jul 2016

References

  • Tongwen, X.; Weihua, Y. (2003) Industrial recovery of mixed acid (HF+HNO3) from the titanium spent leaching solutions by diffusion dialysis with a new series of anion exchange membranes. Journal of Membrane Science, 220 (1–2): 89–95.
  • Agrawal, A.; Sahu, K.K. (2009) An overview of the recovery of acid from spent acidic solutions from steel and electroplating industries. Journal of Hazardous Materials, 171 (1–3): 61–75.
  • Narěbska, A.; Staniszewski, M. (1997) Separation of fermentation products by membrane techniques. I. Separation of lactic acid/lactates by diffusion dialysis. Separation Science and Technology, 32(10): 1669–1682.
  • Palatý, Z.; Stoček, P.; Bendová, H.; Prchal, P. (2009) Continuous dialysis of carboxylic acids: Solubility and diffusivity in Neosepta-AMH membranes. Desalin, 243(1–3): 65–73.
  • Luo, J.; Wu, C.; Xu, T.; Wu, Y. (2011) Diffusion dialysis-concept, principle and applications. Journal of Membrane Science, 366(1–2): 1–16.
  • Lie, H.; Ming, C.; Xiong-jiao, Z. (2009) Acid waste water comprehensive treatment rebuilding engineering practice [J]. Metal Production, 1: 020.
  • Shin, C.-H.; Kim, J.-Y.; Kim, J.-Y.; Kim, H.-S.; Lee, H.-S.; Mohapatra, D.; Ahn, J.-W.; Ahn, J.-G.; Bae, W. (2009) Recovery of nitric acid from waste etching solution using solvent extraction. Journal of Hazardous Materials, 163 (2–3): 729–734.
  • Wei, C.; Li, X.; Deng, Z.; Fan, G.; Li, M.; Li, C. (2010) Recovery of H2SO4 from an acid leach solution by diffusion dialysis. Journal of Hazardous Materials, 176 (1–3): 226–230.
  • Wijmans, J.G.; Baker, R.W. (1995) The solution-diffusion model: A review. Journal of Membrane Science, 107 (1–2): 1–21.
  • Strathmann, H. (2004) Ion-Exchange Membrane Separation Process. Elsevier: Stuttgart-German, Vol 9, p. 360.
  • Elmidaoui, A.; Molenat, J.; Gavach, C. (1991) Competitive diffusion of hydrochloric acid and sodium chloride through an acid dialysis membrane. Journal of Membrane Science, 55 (1–2): 79–98.
  • Kang, M.-S.; Yoo, K.-S.; Oh, S.-J.; Moon, S.-H. (2001) A lumped parameter model to predict hydrochloric acid recovery in diffusion dialysis. Journal of Membrane Science, 188 (1): 61–70.
  • Palatý, Z.; Žáková, A.; Doleček, P. (2000) Modelling the transport of Cl− ions through the anion-exchange membrane NEOSEPTA-AFN: Systems HCl/membrane/H2O and HCl–FeCl3/membrane/H2O. Journal of Membrane Science, 165 (2): 237–249.
  • Palatý, Z.; Aková, A. (2004) Separation of H2SO4+ ZnSO4 mixture by diffusion dialysis. Desalin, 169 (3): 277–285.
  • Palatý, Z.; Žáková, A. (2004) Separation of H2SO4+CuSO4 mixture by diffusion dialysis. Journal of Hazardous Materials, 114 (1–3): 69–74.
  • Palatý, Z.; Bendová, H. (2009) Separation of HCl+ FeCl2 mixture by anion-exchange membrane. Separation and Purification Technology, 66 (1): 45–50.
  • Palatý, Z.; Bendová, H. (2011) Transport of nitric acid through anion-exchange membrane in the presence of sodium nitrate. Journal of Membrane Science, 372 (1–2): 277–284.
  • Hao, J.; Wu, Y.; Ran, J.; Wu, B.; Xu, T. (2013) A simple and green preparation of PVA-based cation exchange hybrid membranes for alkali recovery. Journal of Membrane Science, 433: 10–16.
  • Zhang, X.; Wang, X.; Li, C.; Feng, H.; Wang, Y.; Luo, J.; Xu, T. (2013) A quantification of diffusion dialysis process: Single electrolyte system (sodium chloride solution). Separation and Purification Technology, 105: 48–54.
  • Wu, Y.; Luo, J.; Zhao, L.; Zhang, G.; Wu, C.; Xu, T. (2013) QPPO/PVA anion exchange hybrid membranes from double crosslinking agents for acid recovery. Journal of Membrane Science, 428 (0): 95–103.
  • Gu, J.; Wu, C.; Wu, Y.; Luo, J.; Xu, T. (2012) PVA-based hybrid membranes from cation exchange multisilicon copolymer for alkali recovery. Desalin, 304: 25–32.
  • Li, N.; Guiver, M.D. (2014) Ion transport by nanochannels in ion-containing aromatic copolymers. Macromol, 47 (7): 2175–2198.
  • Zhou, J.; Unlu, M.; Vega, J.A.; Kohl, P.A. (2009) Anionic polysulfone ionomers and membranes containing fluorenyl groups for anionic fuel cells. Journal of Power Sources, 190 (2): 285–292.
  • Chen, D.; Hickner, M.A. (2013) Ion clustering in quaternary ammonium functionalized benzylmethyl containing poly (arylene ether ketone) s. Macromol, 46 (23): 9270–9278.
  • Li, Q.; Liu, L.; Miao, Q.; Jin, B.; Bai, R. (2014) A novel poly (2, 6-dimethyl-1, 4-phenylene oxide) with trifunctional ammonium moieties for alkaline anion exchange membranes. Chemical Communications, 50 (21): 2791–2793.
  • Liu, Z.; Li, X.; Shen, K.; Feng, P.; Zhang, Y.; Xu, X.; Hu, W.; Jiang, Z.; Liu, B.; Guiver, M.D. (2013) Naphthalene-based poly (arylene ether ketone) anion exchange membranes. Journal of Materials Chemistry, A. 1(21): 6481–6488.
  • Lin, X.; Wu, L.; Liu, Y.; Ong, A.L.; Poynton, S.D.; Varcoe, J.R.; Xu, T. (2012) Alkali resistant and conductive guanidinium-based anion-exchange membranes for alkaline polymer electrolyte fuel cells. Journal of Power Sources, 217 (0): 373–380.
  • Zhang, Q.; Li, S.; Zhang, S. (2010) A novel guanidinium grafted poly (aryl ether sulfone) for high-performance hydroxide exchange membranes. Chemical Communications, 46 (40): 7495–7497.
  • Wang, J.; Li, S.; Zhang, S. (2010) Novel hydroxide-conducting polyelectrolyte composed of an poly (arylene ether sulfone) containing pendant quaternary guanidinium groups for alkaline fuel cell applications. Macromol, 43 (8): 3890–3896.
  • Liu, L.; Li, Q.; Dai, J.; Wang, H.; Jin, B.; Bai, R. (2014) A facile strategy for the synthesis of guanidinium-functionalized polymer as alkaline anion exchange membrane with improved alkaline stability. Journal of Membrane Science, 453: 52–60.
  • Qu, C.; Zhang, H.; Zhang, F.; Liu, B. (2012) A high-performance anion exchange membrane based on bi-guanidinium bridged polysilsesquioxane for alkaline fuel cell application. Journal of Materials Chemistry, 22 (17): 8203–8207.
  • Zhang, B.; Gu, S.; Wang, J.; Liu, Y.; Herring, A.M.; Yan, Y. (2012) Tertiary sulfonium as a cationic functional group for hydroxide exchange membranes. RSC Advances, 2 (33): 12683–12685.
  • Gu, S.; Cai, R.; Luo, T.; Chen, Z.; Sun, M.; Liu, Y.; He, G.; Yan, Y. (2009) A soluble and highly conductive ionomer for high‐performance hydroxide exchange membrane fuel cells. Angewandte Chemie International Edition 48 (35): 6499–6502.
  • Gu, S.; Cai, R.; Yan, Y. (2011) Self-crosslinking for dimensionally stable and solvent-resistant quaternary phosphonium based hydroxide exchange membranes. Chemical Communications, 47 (10): 2856–2858.
  • Gu, S.; Skovgard, J.; Yan, Y.S. (2012) Engineering the Van der Waals interaction in cross-linking-free hydroxide exchange membranes for low swelling and high conductivity. ChemSusChem, 5(5): 843–848.
  • Jiang, L.; Lin, X.; Ran, J.; Li, C.; Wu, L.; Xu, T. (2012) Synthesis and properties of quaternary phosphonium‐based anion exchange membrane for fuel cells. Chinese Journal of Chemistry, 30(9): 2241–2246.
  • Noonan, K.J.; Hugar, K.M.; Kostalik IV, H.A.; Lobkovsky, E.B.; Abruña, H.C.D.; Coates, G.W. (2012) Phosphonium-functionalized polyethylene: A new class of base-stable alkaline anion exchange membranes. Journal of the American Chemical Society, 134 (44): 18161–18164.
  • Döbbelin, M.; Azcune, I.; Bedu, M.l.; Ruiz de Luzuriaga, A.; Genua, A.; Jovanovski, V.; Cabañero, G.N.; Odriozola, I. (2012) Synthesis of pyrrolidinium-based poly (ionic liquid) electrolytes with poly (ethylene glycol) side chains. Chemistry of Materials, 24 (9): 1583–1590.
  • Gu, F.; Dong, H.; Li, Y.; Sun, Z.; Yan, F. (2014) Base stable pyrrolidinium based cations for anion exchange membrane application. Macromolecules, 47: 4740–6747.
  • Cheng, C.; Yang, Z.; Pan, J.; Tong, B.; Xu, T. (2014) Facile and cost effective PVA based hybrid membrane fabrication for acid recovery. Separation and Purification Technology, 136 (0): 250–257.
  • Wu, Y.; Luo, J.; Zhao, L.; Zhang, G.; Wu, C.; Xu, T. (2013) QPPO/PVA anion exchange hybrid membranes from double crosslinking agents for acid recovery. Journal of Membrane Science, 428: 95–103.
  • Arges, C.G.; Wang, L.; Jung, M.-s.; Ramani, V. (2015) Mechanically stable poly (arylene ether) anion exchange membranes prepared from commercially available polymers for alkaline electrochemical devices. Journal of The Electrochemical Society, 162 (7): F686–F693.
  • E. Pretsch, P.B., C. Affolter (2000) Structure Determination of Organic Compounds Tables of Spectral Data, 6. Springer-Verlag: Berlin, p. 271.
  • Wu, L.; Xu, T.; Yang, W. (2006) Fundamental studies of a new series of anion exchange membranes: Membranes prepared through chloroacetylation of poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) followed by quaternary amination. Journal of Membrane Science, 286 (1–2): 185–192.
  • Li, Y.; Xu, T.; Gong, M. (2006) Fundamental studies of a new series of anion exchange membranes: Membranes prepared from bromomethylated poly(2,6-dimethyl-1,4-phenylene oxide) (BPPO) and pyridine. Journal of Membrane Science, 279 (1–2): 200–208.
  • Wu, C.; Wu, Y.; Luo, J.; Xu, T.; Fu, Y. (2010) Anion exchange hybrid membranes from PVA and multi-alkoxy silicon copolymer tailored for diffusion dialysis process. Journal of Membrane Science, 356 (1–2): 96–104.
  • Luo, J.; Wu, C.; Wu, Y.; Xu, T. (2010) Diffusion dialysis of hydrochloride acid at different temperatures using PPO–SiO 2 hybrid anion exchange membranes. Journal of Membrane Science, 347 (1): 240–249.
  • Zhang, Z.; Wu, L.; Varcoe, J.; Li, C.; Ong, A.L.; Poynton, S.; Xu, T. (2013) Aromatic polyelectrolytes via polyacylation of pre-quaternized monomers for alkaline fuel cells. Journal of Materials Chemistry A, 1 (7): 2595–2601.
  • Ran, J.; Wu, L.; Lin, X.; Jiang, L.; Xu, T. (2012) Synthesis of soluble copolymers bearing ionic graft for alkaline anion exchange membrane. RSC Advances, 2 (10): 4250–4257.
  • Berezina, N.; Kononenko, N.; Dyomina, O.; Gnusin, N. (2008) Characterization of ion-exchange membrane materials: Properties vs structure. Advances in Colloid and Interface Science, 139 (1): 3–28.
  • Chakrabarty, T.; Singh, A.K.; Shahi, V.K. (2012) Zwitterionic silica copolymer based crosslinked organic-inorganic hybrid polymer electrolyte membranes for fuel cell applications. RSC Advances, 2 (5): 1949–1961.
  • Cheng, C.; Yang, Z.; He, Y.; Mondal, A.N.; Bakangura, E.; Xu, T. (2015) Diffusion dialysis membranes with semi-interpenetrating network for acid recovery. Journal of Membrane Science, 493: 645–653.
  • Mondal, A.N.; Cheng, C.; Yao, Z.; Pan, J.; Hossain, M.M.; Khan, M.I.; Yang, Z.; Wu, L.; Xu, T. (2015) Novel quaternized aromatic amine based hybrid PVA membranes for acid recovery. Journal of Membrane Science, 490 (0): 29–37.
  • Ran, J.; Wu, L.; Varcoe, J.R.; Ong, A.L.; Poynton, S.D.; Xu, T. (2012) Development of imidazolium-type alkaline anion exchange membranes for fuel cell application. Journal of Membrane Science, 415–416 (0): 242–249.
  • He, Y.; Pan, J.; Wu, L.; Ge, L.; Xu, T. (2015) Facile preparation of 1, 8-diazabicyclo [5.4. 0] undec-7-ene based High performance anion exchange membranes for diffusion dialysis applications. Journal of Membrane Science, 491: 45–52.
  • Wu, Y.; Luo, J.; Wu, C.; Xu, T.; Fu, Y. (2011) Bionic multisilicon copolymers used as novel cross-linking agents for preparing anion exchange hybrid membranes. The Journal of Physical Chemistry B, 115(20): 6474–6483.
  • Sun, F.; Wu, C.; Wu, Y.; Xu, T. (2014) Porous BPPO-based membranes modified by multisilicon copolymer for application in diffusion dialysis. Journal of Membrane Science, 450 (0): 103–110.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.