222
Views
8
CrossRef citations to date
0
Altmetric
Air separator

Experimental and 3D-CFD investigation on optimization of the air separator structural parameters for maximum separation efficiency

&
Pages 903-929 | Received 12 Feb 2016, Accepted 29 Nov 2016, Published online: 19 Jan 2017

References

  • Ranque, G.J. (1933) Experiments on expansion in a vortex with simultaneous exhaust of hot air and cold air. Le J. de Physique et le Radium, 4: 112–114.
  • Hilsch, R. (1947) The use of expansion of gases in a centrifugal field as a cooling process. Review of Scientific Instruments, 18:108–113.
  • Dutta, T.; Sinhamahapatra, K.P.; Bandyopadhyay, S.S. (2011) Numerical investigation of gas species and energy separation in the Ranque–Hilsch vortex tube using real gas model. International Journal of Refrigeration, 26 (8): 2118–2128.
  • Baghdad, M.; Ouadha, A.; Imine, O.; Addad, Y. (2011). ‘Numerical study of energy separation in a vortex tube with different RANS models. International Journal of Thermal Sciences, 50(12): 2377–2385
  • Valipour, M.S.; Niazi, N. (2011) Experimental modeling of a curved Ranque–Hilsch vortex tube refrigerator. International Journal of Refrigeration, 34: 1109–1116.
  • Bovand, M.; Sadegh Valipour, M.; Dincer, K.; Tamayol, A. (2014) Numerical analysis of the curvature effects on Ranque–Hilsch vortex tube refrigerators. Applied Thermal Engineering, 65 (1–2): 176–183.
  • Bovand, M.; Sadegh Valipour, M.; Eiamsa-ard, S.; Tamayol, A. (2014) Numerical analysis for curved vortex tube optimization. International Communications in Heat and Mass Transfer, 50: 98–107.
  • Rafiee, S.E.; Ayenehpour, S.; Sadeghiazad, M.M. (2016) A study on the optimization of the angle of curvature for a Ranque–Hilsch vortex tube, using both experimental and full Reynolds stress turbulence numerical modeling. Heat and Mass Transfer, 52(2): 337–350.
  • Dincer, K. (2011) Experimental investigation of the effects of threefold type Ranque–Hilsch vortex tube and six cascade type Ranque–Hilsch vortex tube on the performance of counter flow Ranque–Hilsch vortex tubes. International Journal of Refrigeration, 34 (6): 1366–1371.
  • Im, S.Y.; Yu, S.S. (2012) Effects of geometric parameters on the separated air flow temperature of a vortex tube for design optimization. Energy, 37 (1): 154–160.
  • Rafiee, S.E.; Sadeghiazad, M.M. (2016a) Three-dimensional numerical investigation of the separation process in a vortex tube at different operating conditions. Journal of Marine Science and Application, 15 (2): 157–165.
  • Han, X.; Li, N.; Wu, K.; Wang, Z.; Tang, L.; Chen, G.; Xu. X. (2013) The influence of working gas characteristics on energy separation of vortex tube. Applied Thermal Engineering 61 (2): 171–177.
  • Thakare, H.R.; Parekh, A.D. (2015) Computational analysis of energy separation in counter—flow vortex tube. Energy, 85: 62–77.
  • Mohammadi, S.; Farhadi. F. (2013) Experimental analysis of a Ranque–Hilsch vortex tube for optimizing nozzle numbers and diameter. Applied Thermal Engineering, 61 (2): 500–506.
  • Rafiee, S.E.; Sadeghiazad, M.M. (2014) Three-dimensional and experimental investigation on the effect of cone length of throttle valve on thermal performance of a vortex tube using k–ɛ turbulence model. Applied Thermal Engineering, 66 (1–2): 65–74.
  • Rahim, S.; Nezhad Alireza, H. (2010) Numerical analysis of the effects of nozzles number on the flow and power of cooling of a vortex tube. International Journal of Refrigeration, 33: 774–782.
  • Rafiee, S.E.; Rahimi, M. (2013) Experimental study and three-dimensional (3D) computational fluid dynamics (CFD) analysis on the effect of the convergence ratio, pressure inlet and number of nozzle intake on vortex tube performance—Validation and CFD optimization. Energy, 63: 195–204.
  • Kulyk, M.; Lastivka, I.; Tereshchenko, Y. (2012) Effect of hysteresis in axial compressors of gas-turbine engines. Aviation, 16 (4): 97–102.
  • Rafiee, S.E.; Sadeghiazad, M.M. (2016) Three-dimensional computational prediction of vortex separation phenomenon inside the Ranque–Hilsch vortex tube. Aviation, 20 (1): 21–31.
  • Saidi, M.H.; Allaf Yazdi, M.R. (1999). ‘Exergy model of a vortex tube system with experimental results. Energy, 24: 625–32.
  • Ouadha, A.; Baghdad, M.; Addad, Y. (2013) Effects of variable thermophysical properties on flow and energy separation in a vortex tube. International Journal of Refrigeration, 36 (8): 2426–2437.
  • Rafiee, S.E.; Sadeghiazad, M.M. (2014) 3D CFD exergy analysis of the performance of a counter flow vortex tube. International Journal of Heat and Technology, 32 (1–2): 71–77.
  • Secchiaroli, A.; Ricci, R.; Montelpare, S.; D’Alessandro, V. (2009) Numerical simulation of turbulent flow in a Ranque–Hilsch vortex tube. International Journal of Heat and Mass Transfer, 52: 5496–5511
  • Pinar, A.M.; Uluer, O.; Kırmaci, V. (2009) Optimization of counter flow Ranque–Hilsch vortex tube performance using Taguchi method. International Journal of Refrigeration, 32: 1487–1494.
  • Korkmaz, M.E.; Gümüşel, L.; Markal, B. (2012) Using artificial neural network for predicting performance of the Ranque–Hilsch vortex tube. International Journal of Refrigeration, 35 (6): 1690–1696
  • Berber, A.; Dincer, K.; Yılmaz, Y.; Ozen, D.N. (2013) Rule-based Mamdani-type fuzzy modeling of heating and cooling performances of counter-flow Ranque–Hilsch vortex tubes with different geometric construction for steel. Energy, 51: 297–304
  • Rafiee, S.E.; Sadeghiazad, M.M. (2015) 3D numerical analysis on the effect of rounding off edge radius on thermal separation inside a vortex tube. International Journal of Heat and Technology, 33 (1): 83–90.
  • Saidi, M.H.; Valipour, M.S. Experimental modeling of vortex tube refrigerator Applied Thermal Engineering, 23: 1971–1980.
  • Aydin, O.; Baki, M. (2006) An experimental study on the design parameters of a counter flow vortex tube. Energy 31: 2763–2772.
  • Rafiee, S.E.; Sadeghiazad, M.M.; Mostafavinia, N. (2015). Experimental and numerical investigation on effect of convergent angle and cold orifice diameter on thermal performance of convergent vortex tube. Journal of Thermal Science and Engineering Applications, 7: 4. Article number 041006.
  • Chang, K.; Li, Q.; Zhou, G.; Li, Q. (2011) Experimental investigation of vortex tube refrigerator with a divergent hot tube. International Journal of Refrigeration, 34: 322–327.
  • Rahimi, M.; Rafiee, S.E.; Pourmahmoud, N. (2013). Numerical investigation of the effect of divergent hot tube on the energy separation in a vortex tube. International Journal of Heat and Technology, 31 (2): 17–26.
  • Dincer, K.; Baskaya, S.; Uysal, B.Z. (2008) Experimental investigation of the effects of length to diameter ratio and nozzle number on the performance of counter flow Ranque–Hilsch vortex tubes. Heat Mass Transfer, 44: 367–373.
  • Agrawal, N.; Naik, Y.P.; Gawale, S.S. Experimental investigation of vortex tube using natural substances. International Communications in Heat and Mass Transfer, 52: 51–55.
  • Ahlborn, B.K.; Gordon, J.M. (2000) The vortex tube as classic thermodynamic refrigeration Cycle. Journal of Applied Physics, 88: 3645–3653.
  • Akhesmeh, S.; Pourmahmoud, N.; Sedgi, H. (2008) Numerical study of the temperature separation in the Ranque–Hilsch vortex tube. American Journal of Engineering and Applied Sciences, 3: 181–187.
  • Rafiee, S.E.; Rahimi, M. (2014) Three-dimensional simulation of fluid flow and energy separation inside a vortex tube. Journal of Thermophysics and Heat Transfer, 28: 87–99. DOI: 10.2514/1.T4198.
  • Aljuwayhel, N.F.; Nellis, G.F.; Klein, S.A. (2005) Parametric and internal study of the vortex tube using a CFD model. International Journal of Refrigeration, 28: 442–450.
  • Skye, H.M.; Nellis, G.F.; Klein, S.A. (2006) Comparison of CFD analysis to empirical data in a commercial vortex tube. International Journal of Refrigeration, 29: 71–80.
  • Subudhi, S.; Sen, M. (2015) Review of Ranque–Hilsch vortex tube experiments using air. Renewable and Sustainable Energy Reviews, 52: 172–178.
  • Thakare, H.R.; Monde, A.; Parekh, A.D. (2015) Experimental, computational and optimization studies of temperature separation and flow physics of vortex tube: A review. Renewable and Sustainable Energy Reviews, 52: 1043–1071
  • Piralishvili, S.A.; Polyaev, V.M. (1996) Flow and thermodynamic characteristics of energy separation in a double-circuit vortex tube—An experimental investigation. Experimental Thermal and Fluid Science, 12: 399–410.
  • Alekhin, V.; Bianco, V.; Khait, A.; Noskov, A. Numerical investigation of a double-circuit Ranque–Hilsch vortex tube. International Journal of Thermal Sciences, 89: 272–282.
  • Kandil, H.A.; Abdelghany, S.T. (2015) Computational investigation of different effects on the performance of the Ranque–Hilsch vortex tube. Energy, 84: 207–218.
  • Pourmahmoud, N.; Rafiee, S.E.; Rahimi, M.; Hassanzadeh, A. (2013) Numerical energy separation analysis on the commercial Ranque–Hilsch vortex tube on basis of application of different gases. Scientia Iranica, 20 (5): 1528–1537.
  • Liu, X.; Liu, Z. (2014) Investigation of the energy separation effect and flow mechanism inside a vortex tube. Applied Thermal Engineering, 67 (1–2): 494–506.
  • Pourmahmoud, N.; Hassanzadeh, A.; Moutaby, O. (2012) Numerical analysis of the effect of helical nozzles gap on the cooling capacity of Ranque–Hilsch vortex tube. International Journal of Refrigeration, 35 (5): 1473–1483.
  • Pourmahmoud, N.; Rahimi, M.; Rafiee, S.E.; Hassanzadeh, A. (2014) A numerical simulation of the effect of inlet gas temperature on the energy separation in a vortex tube. Journal of Engineering Science and Technology, 9 (1): 81–96.
  • Khazaei, H.; Teymourtash, A.R.; Malek-Jafarian, M. (2012) Effects of gas properties and geometrical parameters on performance of a vortex tube. Scientia Iranica, 19 (3): 454–462.
  • Li, N.; Zeng, Z.Y.; Wang, Z.; Han, X.H.; Chen, G.M. Experimental study of the energy separation in a vortex tube. International Journal of Refrigeration, 55: 93–101.
  • Rafiee, S.E.; Sadeghiazad, M.M. (2014c) Effect of conical valve angle on cold-exit temperature of vortex tube. Journal of Thermophysics and Heat Transfer, 28 (4): 785–794.
  • Gutak, A.D. (2015) Experimental investigation and industrial application of Ranque–Hilsch vortex tube. International Journal of Refrigeration, 49: 93–98.
  • Rafiee, S.E.; Rahimi, M.; Pourmahmoud, N. (2013). Three-dimensional numerical investigation on a commercial vortex tube based on an experimental model—Part I: Optimization of the working tube radius. International Journal of Heat and Technology, 31 (1): 49–56.
  • Mohammadi, S.; Farhadi, F. (2014) Experimental and numerical study of the gas–gas separation efficiency in a Ranque–Hilsch vortex tube. Separation and Purification Technology, 138: 177–185.
  • Rafiee, S.E.; Sadeghiazad, M.M. (2016). Heat and mass transfer between cold and hot vortex cores inside Ranque–Hilsch vortex tube-optimization of hot tube length. International Journal of Heat and Technology, 34 (1): 31–38.
  • Khait, A.V.; Noskov, A.S.; Lovtsov, A.V.; Alekhin, V.N. (2014) Semi-empirical turbulence model for numerical simulation of swirled compressible flows observed in Ranque–Hilsch vortex tube. International Journal of Refrigeration, 48: 132–141.
  • Rafiee, S.E.; Sadeghiazad, M.M. (2016) Three-dimensional CFD simulation of fluid flow inside a vortex tube on basis of an experimental model—The optimization of vortex chamber radius. International Journal of Heat and Technology, 34 (2): 236–244.
  • Sadi, M.; Farzaneh-Gord, M. (2014) Introduction of annular vortex tube and experimental comparison with Ranque–Hilsch vortex tube. International Journal of Refrigeration, 46: 142–151.
  • Rafiee, S.E.; Sadeghiazad, M.M. (2016) Experimental and 3D-CFD study on optimization of control valve diameter for a convergent vortex tube. Frontiers in Heat and Mass Transfer, 7 (1): 1–15.
  • Pourmahmoud, N.; Hassanzadeh, A.; Rafiee, S.E.; Rahimi, M. (2012). Three-dimensional numerical investigation of effect of convergent nozzles on the energy separation in a vortex tube. International Journal of Heat and Technology, 30 (2): 133–140
  • Bej, N.; Sinhamahapatra, K.P. (2014) Exergy analysis of a hot cascade type Ranque-Hilsch vortex tube using turbulence model. International Journal of Refrigeration, 45: 13–24.
  • Avci, M. The effects of nozzle aspect ratio and nozzle number on the performance of the Ranque–Hilsch vortex tube. Applied Thermal Engineering, 50 (1): 302–308.
  • Rafiee, S.E.; Sadeghiazad, M.M. (2017) Experimental and 3D CFD investigation on heat transfer and energy separation inside a counter flow vortex tube using different shapes of hot control valves. Applied Thermal Engineering, 110:648–664.
  • Moffat, R.J. (1985) Using uncertainty analysis in the planning of an experiment. Transactions of ASME, Journal of Fluids Engineering, 107: 173–178.
  • FLUENT 6.3, theory. Fluent Inc.; September 2006.
  • Stephan, K.; Lin, S.; Durst, M.; Seher, F.; Huang, D. (1983) An investigation of energy separation in a vortex tube. International Journal of Heat and Mass Transfer, 26 (3): 341–348
  • Farzaneh-Gord, M.; Sadi, M. Improving vortex tube performance based on vortex generator design. Energy, 72 (1): 492–500.
  • Nimbalkar, S.U.; Muller, M.R. An experimental investigation of the optimum geometry for the cold end orifice of a vortex tube. Applied Thermal Engineering, 29 (2–3): 509e14. http://dx.doi.org/10.1016/j.applthermaleng.2008.03.032.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.