251
Views
14
CrossRef citations to date
0
Altmetric
Articles

Solubility of tri-iso-amyl phosphate in supercritical carbon dioxide and its application to selective extraction of uranium

, , , & ORCID Icon
Pages 2224-2237 | Received 22 Jul 2016, Accepted 24 Jan 2017, Published online: 03 Apr 2017

References

  • Brunner, G. (2010) Applications of supercritical fluids. Annual Review of Chemical and Biomolecular Engineering, 1: 321–342.
  • Bubalo, M.C.; Vidovic, S.; Redovnikovic, I.R.; Jokic, S. (2015) Green solvents for green technologies. Journal of Chemical Technology and Biotechnology, 90 (9): 1631–1639.
  • Herrero, M.; Mendiola, J.A.; Cifuentes, A.; Ibanez, E. (2010) Supercritical fluid extraction: Recent advances and applications. Journal of Chromatography A, 1217 (16): 2495–2511.
  • Kenz, Z.; Markocic, E.; Leitgeb, M.; Primozic, M.; Hrnviv, M.K.; Skerget, M. (2014) Industrial applications of supercritical fluids: A review. Energy, 77: 235–243.
  • Lin, Y.; Smart, N.G.; Wai, C.M. (1995) Supercritical fluid extraction and chromatography of metal chelates and organometallic compounds. Trends in Analytical Chemistry, 14 (3): 123–133.
  • Temelli, F. (2009) Perspectives on supercritical fluid processing of fats and oils. Journal of Supercritical Fluids, 47 (3): 583–590.
  • Wai, C.M.; Wang, S. (1997) Supercritical fluid extraction: Metals as complexes. Journal of Chromatography A, 785 (1): 369–383.
  • Woods, H.M.; Silva, M.M.C.G.; Nouvel, C.; Shakesheff, K.M.; Howdle, S.M. (2004) Materials processing in supercritical carbon dioxide: Surfactants, polymers and biomaterials. Journal of Materials Chemistry, 14 (11): 1663–1678.
  • Zhang, X.; Heinonen, S.; Levänen, E. (2014) Applications of supercritical carbon dioxide in materials processing and synthesis. RSC Advances, 4 (105): 61137–61152.
  • Machado, B.A.S.; Pereira, C.G.; Nunes, S.B.; Padilha, F.F.; Umsza-Guez, M.A. (2013) Supercritical fluid extraction using CO2: Main applications and future perspectives. Separation Science and Technology, 48 (18): 2741–2760.
  • Clifford, A.A. (Ed.) (1999) Properties of Supercritical Fluids Relevant to Extraction and Chromatography, 1st Ed.; Harwood Academic Publishers: Amsterdam.
  • McHugh, M.A.; Krukonis, V.J. (1994) Supercritical Fluid Extraction: Principles and Practice, 2nd Ed.; Butterworth-Heinemann: Boston, MA.
  • Laintz, K.E.; Wai, C.M.; Yonker, C.R.; Smith, R.D. (1992) Extraction of metal Ions from liquid and solid materials by supercritical carbon dioxide. Analytical Chemistry, 64 (22): 2875–2878.
  • Wai, C.M. (1995) Supercritical fluid extraction of trace metals from solid and liquid materials for analytical applications. Analytical Sciences, 11 (1): 165–167.
  • Erkey, C. (2000) Supercritical carbon dioxide extraction of metals from aqueous solutions: A review. Journal of Supercritical Fluids, 17 (3): 259–287.
  • Siddall, T.H. (1959) Trialkyl phosphates and dialkyl alkyl phosphonates in uranium and thorium extraction. Industrial and Engineering Chemistry Research, 51 (1): 41–44.
  • Burger, L.L. (1963) The neutral organophosphorus compounds as extractants. Nuclear Science and Engineering, 16 (4): 428–439.
  • Mckay, H.A.C.; Miles, J.H.; Swanson, J.L. (Eds) (1990) The purex process; CRC Press: Boca Raton, Florida, USA
  • Rao, P.R.V.; Kolarik, Z. (1996) A review of third phase formation in extraction of actinides by neutral organophosphorus extractants. Solvent Extraction and Ion Exchange, 14 (6): 955–993.
  • Sreenivasulu, B.; Suresh, A.; Sivaraman, N.; Rao, P.R.V. (2015) Solvent extraction studies with some fission product elements from nitric acid media employing tri-iso-amyl phosphate and tri-n-butyl phosphate as extractants. Journal of Radioanalytical and Nuclear Chemistry, 303 (3): 2165–2172.
  • Rakesh, K.B.; Suresh, A.; Rao, P.R.V. (2014) Extraction and stripping behaviour of tri-iso-amyl phosphate and tri-n-butyl phosphate in n-dodecane with U (VI) in nitric acid media. Radiochimica Acta, 102 (7): 619–628.
  • Lin, Y.; Brauer, R.D.; Laintz, K.E.; Wai, C.M. (1993) Supercritical fluid extraction of lanthanides and actinides from solid materials with a fluorinated beta-diketone. Analytical Chemistry, 65 (18): 2549–2551.
  • Mincher, B.J.; Fox, R.V.; Holmes, R.G.G.; Robbins, R.A.; Boardman, C. (2001) Supercritical fluid extraction of plutonium and americium from soil using thenoyl trifluoroacetone and tributylphosphate complexation. Radiochimica Acta, 89 (10): 613–617.
  • Kumar, R.; Sivaraman, N.; Vadivu, E.S.; Srinivasan, T.G.; P.R.Vasudeva Rao (2003) Complete removal of uranyl nitrate from tissue matrix using supercritical fluid extraction. Radiochimica Acta, 91 (4): 197–201.
  • Kumar, R.; Sivaraman, N.; Sujatha, K.; Srinivasan, T.G.; Rao, P.R.V. (2007) Removal of plutonium and americium from waste matrices by supercritical carbon dioxide extraction. Radiochimica Acta, 95 (10): 577–584.
  • Sujatha, K.; Pitchaiah, K.C.; Sivaraman, N.; Nagarajan, K.; Srinivasan, T.G.; Rao, P.R.V. (2013) Recovery of plutonium from polymeric waste matrices using supercritical fluid extraction. Desalination and Water Treatment, 52 (1–3): 470–475.
  • Pitchaiah, K.C.; Sujatha, K.; Rao, C.V.S.B.; Subramaniam, S.; Sivaraman, N.; Rao, P.R.V. (2015) Supercritical fluid extraction of uranium and thorium from nitric acid medium using organophosphorous compounds. Radiochimica Acta, 103 (4): 245–255.
  • Kanekar, A.S.; Pathak, P.N.; Mohapatra, P.K. (2015) Supercritical fluid dissolution and extraction of trivalent metal cations from different matrices. Separation Science and Technology, 50 (3): 471–477.
  • Rao, A.; Rathod, N.V.; Malkhede, D.D.; Raut, V.V.; Ramakumar, K.L. (2013) Supercritical carbon dioxide extraction of uranium from acidic medium employing calixarenes. Separation Science and Technology, 48 (4): 644–651.
  • Wang, S.; Lin, Y.; Wai, C.M. (2003) Supercritical fluid extraction of toxic heavy metals from solid and aqueous matrices. Separation Science and Technology, 38 (10): 2279–2289.
  • Shimada, T.; Ogumo, S.; Ishihara, N.; Kosaka, Y.; Mori, Y. (2002) A study on the technique of spent fuel reprocessing with supercritical fluid direct extraction method (Super-DIREX method). Journal of Nuclear Science and Technology, 39 (sup3): 757–760.
  • Schmitt, W.J.; Reid, R.C. (1988) The solubility of paraffinic hydrocarbons and their derivatives in supercritical carbon dioxide. Chemical Engineering Communications, 64 (1): 155–176.
  • Smart, N.G.; Carleson, T.; Kast, T.; Clifford, A.A.; Burford, M.D.; Wai, C.M. (1997) Solubility of chelating agents and metal-containing compounds in supercritical fluid carbon dioxide. Talanta, 44 (2): 137–150.
  • Meguro, Y.; Iso, S.; Sasaki, T.; Yoshida, Z. (1998) Solubility of organophosphorus metal extractants in supercritical carbon dioxide. Analytical Chemistry, 70 (4): 774–779.
  • Nejad, S.J.; Mohammadikhah, R.; Abolghasemi, H.; Moosavian, M.A.; Maragheh, M.G. (2009) A novel equation of state (EOS) for prediction of solute solubility in supercritical carbon dioxide: experimental determination and correlation. The Canadian Journal of Chemical Engineering, 87 (6): 930–938.
  • Pitchaiah, K.C.; Sivaraman, N.; Lamba, N.; Madras, G. (2016) Experimental determination and model correlation for the solubilities of trialkyl phosphates in supercritical carbon dioxide. RSC Advances, 6 (56): 51286–51295.
  • Yeoh, H.S.; Chong, G.H.; Azahan, N.M.; Rahman, R.A.; Choong, T.S.Y. (2013) Solubility measurement method and mathematical modeling in supercritical fluids. Engineering Journal, 17 (3): 67–78.
  • Chrastil, J. (1982) Solubility of solids and liquids in supercritical gases. journal of physical chemistry, 86 (15): 3016–3021.
  • Adachi, Y.; Lu, B.C.-Y. (1983) Supercritical fluid extraction with carbon dioxide and ethylene. Fluid Phase Equilibria, 14: 147–156.
  • Valle, J.M.D.; Aguilera, J.M. (1988) An improved equation for predicting the solubility of vegetable oils in supercritical carbon dioxide. Industrial & Engineering Chemistry Research, 27 (8): 1551–1553.
  • Bartle, K.D.; Clifford, A.A.; Jafar, S.A.; Shilstone, G.F. (1991) Solubilities of solids and liquids of low volatility in supercritical carbon dioxide. Journal of Physical and Chemical Reference Data, 20 (4): 713–757.
  • Gordillo, M.D.; Blanco, M.A.; Molero, A.; Ossa, E.M.d.l. (1999) Solubility of the antibiotic penicillin G in supercritical carbon dioxide. Journal of Supercritical Fluids, 15 (3): 183–190.
  • Méndez-Santiago, J.; Teja, A.S. (1999) The solubility of solids in supercritical fluids. Fluid Phase Equilibria, 158–160:501–510.
  • Sparks, D.L.; Hernandez, R.; Estévez, L.A. (2008) Evaluation of density-based models for the solubility of solids in supercritical carbon dioxide and formulation of a new model. Chemical Engineering Science, 63 (17): 4292–4301.
  • Garlapati, C.; Madras, G. (2009) Solubilities of solids in supercritical fluids using dimensionally consistent modified solvate complex models. Fluid Phase Equilibria, 283 (1–2): 97–101.
  • Garlapati, C.; Madras, G. (2010) Solubilities of palmitic and stearic fatty acids in supercritical carbon dioxide. journal of Chemical Thermodynamics, 42 (2): 193–197.
  • Bian, X.; Du, Z.; Tang, Y. (2011) An improved density-based model for the solubility of some compounds in supercritical carbon dioxide. Thermochimica Acta, 519 (1–2): 16–21.
  • Narayan, R.C.; Dev, J.V.; Madras, G. (2015) Experimental determination and theoretical correlation for the solubilities of dicarboxylic acid esters in supercritical carbon dioxide. Journal of Supercritical Fluids, 101: 87–94.
  • Lamba, N.; Narayan, R.C.; Modak, J.; Madras, G. (2016) Solubilities of 10-undecenoic acid and geraniol in supercritical carbon dioxide. Journal of Supercritical Fluids, 107: 384–391.
  • Lamba, N.; Narayan, R.C.; Raval, J.; Modak, J.; Madras, G. (2016) Experimental solubilities of two lipid derivatives in supercritical carbon dioxide and new correlations based on activity coefficient models. RSC Advances, 6 (22): 17772–17781.
  • Suresh, A.; Srinivasan, T.G.; P R Vasudeva Rao (2009) Parameters influencing third‐phase formation in the extraction of Th (NO3) 4 by some trialkyl phosphates. Solvent Extraction and Ion Exchange, 27 (2): 132–158.
  • Datta, A.; Sivaraman, N.; Srinivasan, T.G.; P R Vasudeva Rao (2011) Liquid chromatographic behavior of lanthanides and actinides on monolith supports. Radiochimica Acta, 99 (5): 275–283.
  • Kim, K.H.; Kim, Y. (2007) Theoretical studies for the supercritical CO2 solubility of organophosphorous molecules: Lewis acid-base interactions and C−H…O weak hydrogen bonding. Bulletin of the Korean Chemical Society, 28 (12): 2454–2458.
  • Jha, S.K.; Madras, G. (2004) Modeling the solubilities of high molecular weight n-alkanes in supercritical carbon dioxide. Fluid Phase Equilibria, 225: 59–62.
  • Saldaña, M.D.A.; Tomberli, B.; Guigard, S.E.; Goldman, S.; Gray, C.G.; Temelli, F. (2007) Determination of vapor pressure and solubility correlation of phenolic compounds in supercritical CO2. Journal of Supercritical Fluids, 40 (1): 7–19.
  • Dandge, D.K.; Heller, J.P.; Wilson, K.V. (1985) Structure solubility correlations: Organic compounds and dense carbon dioxide binary systems. Industrial & engineering chemistry product research and development, 24 (1): 162–166.
  • Prezhdo, O.V.; Gawdzik, B.; Zubkova, V.V.; Prezhdo, V.V. (2009) Molecular structure and electrical properties of some phosphonates, phosphine-oxides and phosphates. Journal of Molecular Structure, 919 (1): 146–153.
  • Paneerselvam, K.; Antony, M.P.; Srinivasan, T.G.; Rao, P.R.V. (2010) Estimation of normal boiling points of trialkyl phosphates using retention indices by gas chromatography. Thermochimica Acta, 511 (1–2): 107–111.
  • Foster, N.R.; Gurdial, G.S.; Yun, J.S.; Liong, K.K.; Tilly, K.D.; Ting, S.S.; Singh, H.; Lee, J.H. (1991) Significance of the crossover pressure in solid-supercritical fluid phase equilibria. Industrial & Engineering Chemistry Research, 30 (8): 1955–1964.
  • Kaboudvand, M.; Ghaziaskar, H.S. (2008) Solubility of tridodecylamine in supercritical carbon dioxide. Journal of Chemical & Engineering Data, 53 (8): 1841–1845.
  • Laintz, K.E.; Tachikaw, E. (1994) Extraction of lanthanides from acidic solution using tributyl phosphate modified supercritical carbon dioxide. Analytical Chemistry, 66 (13): 2190–2193.
  • Meguro, Y.; Iso, S.; Takeishi, H.; Yoshida, Z. (1996) Extraction of uranium (VI) in nitric acid solution with supercritical carbon dioxide fluid containing tributylphosphate. Radiochimica Acta, 75 (4): 185–192.
  • Meguro, Y.; Iso, S.; Yoshida, Z. (1998) Correlation between extraction equilibrium of uranium (VI) and density of CO2 medium in a HNO3/supercritical CO2-tributyl phosphate system. Analytical Chemistry, 70 (7): 1262–1267.
  • Zhu, L.; Duan, W.; Xu, J.; Zhu, Y. (2011) Extraction of actinides and lanthanides by supercritical fluid. Journal of Engineering for Gas Turbines and Power, 133 (5): 052903.
  • Shukla, J.P.; Gautam, M.M.; Kedari, C.S.; Hasan, S.H.; Rupainwar, D.C. (1997) Extraction of uranium (VI), plutonium (IV) and some fission products by tri-iso-amyl phosphate. Journal of Radioanalytical and Nuclear Chemistry, 219 (1): 61–67.
  • Rao, A.; Kumar, P.; Ramakumar, K. (2008) Study of effects of different parameters on supercritical fluid extraction of uranium from acidic solutions employing TBP as co-solvent. Radiochimica Acta, 96 (12): 787–798.
  • Clifford, A.A.; Zhu, S.; Smart, N.G.; Lin, Y.; Wai, C.M.; Yoshida, Z.; Meguro, Y.; Iso, S. (2001) Modelling of the extraction of uranium with supercritical carbon dioxide. Journal of Nuclear Science and Technology, 38 (6): 433–438.
  • Lin, Y.; Smart, N.G.; Wai, C.M. (1995) Supercritical fluid extraction of uranium and thorium from nitric acid solutions with organophosphorus reagents. Environmental science & technology, 29 (10): 2706–2708.
  • Rao, A.; Rathod, N.V.; Malkhede, D.D.; Raut, V.V.; Ramakumar, K. (2013) Supercritical carbon dioxide extraction of uranium from acidic medium employing calixarenes. Separation Science and Technology, 48 (4): 644–651.
  • Sujatha, K.; Pitchaiah, K.C.; N.Sivaraman; T.G.Srinivasan; Rao, P.R.V. (2012) Recovery of uranium and plutonium from waste matrices using supercritical fluid extraction. American Journal of Analytical Chemistry, 3 (12A): 916–922.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.