93
Views
3
CrossRef citations to date
0
Altmetric
Extraction

Comparative study: Correlating extraction efficiency for Hg(II), Cd(II), and Pb(II) metal ions with the chelate stability and total hardness in simple nitrogen donors

Pages 1680-1695 | Received 26 Jun 2016, Accepted 20 Feb 2017, Published online: 25 Apr 2017

References

  • Al Abdel Hamid, A.; Tripp, C.P.; Bruce, A.E.; Bruce, M.R. (2010) Preferential adsorption of mercury(II) ions in water: chelation of mercury, cadmium, and lead ions to silica derivatized with meso-2,3- dimercaptosuccinic acid. Journal of Coordination Chemistry, 63 (5): 731.
  • Williams, D.R. (1971) Metal Ions in Vivo in the Metals of Life., Chapter 2; Van Nostrand Reinhold: London, UK.
  • Hughes, M.N. (1972) The Alkali Metal and Alkaline-Earth Metal Cations in Biology in the Inorganic Chemistry of Biological Processes, Chapter 8; Wiley: New York.
  • Osterberg, R. (1976) The Origin and Specificity of Metal Ions in Biology, in An Introduction to Bio-Inorganic Chemistry, Chapter 2; Springfield: USA
  • L. Ja¨rup (2003) Hazards of heavy metal contamination. British Medical Bulletin, 68: 167.
  • Basinger, M.A.; Casas, J.S.M.; Jones, M.; Weaver, A.D. (1981) Structural requirements for mercury(II) antidotes. Journal of Inorganic and Nuclear Chemistry, 43: 1419.
  • Al Abdel Hamid, A.; Tripp, C.P.; Bruce, A.E.; Bruce, M.R. (2011) Application of structural analogs of dimercaptosuccinic acid- functionalized silica nanoparticles (DMSA-[silica]) to adsorption of mercury, cadmium, and lead. Research on Chemical Intermediates, 37: 791.
  • Andersen, O. (1999) Principles and recent developments in chelation treatment of metal intoxication. Chemical Reviews, 99: 2683.
  • Alp, H.; Blu, Z.; Ocak, M.; Ocak, U.; Kantekin, H.; Dilber, G. (2007) New heavy metal ion-selective macrocyclic ligands with nitrogen and sulfur donor atoms and their extractant properties. Separation Science and Technology, 42: 835.
  • Beklemishev, M.K.; Dmitrenko, S.G.; Isakova, N.V. (1997) Solvent Extraction of Metals with Macrocyclic Reagents and its Analytical Applications, Wiley-Interscience: New York, USA.
  • Ikeda, K.; Abe, S. (1998) Liquid-liquid extraction of cationic metal complexes with p-nonylphenol solvent: application to crown and thiacrown ether complexes of lead (II) and copper (II). Analytica Chimica Acta, 363: 1650.
  • Fujivara, M.; Matsushita, T.; Shono, T. (1984) Preparation and characterization of a novel macrocyclic ligand-dinitro-tetraazacyclotetradeca-tetraene and application as a highly selective extractant for copper (II). Polyhedron, 3: 1357.
  • Tanaka, M.; Nakamura, M.; Ikeda,T.; Ikeda, K.; Ando, H.; Shibutani Y.;Yajima, S., Kimura, K. (2001) Synthesis and metal-ion binding properties of monoazathiacrown ethers. The Journal of Organic Chemistry, 66: 7008.
  • Khoutoul, Md.; Abrigach, F.; Zarrouk, A.; Benchat, N.; Lamsayah, M.; Touzani, R. (2015) New nitrogen-donor pyrazole ligands for excellent liquid–liquid extraction of Fe2+ ions from aqueous solution, with theoretical study. Research on Chemical Intermediates, 41: 3319.
  • Harit, T.; Cherfi, M.; Isaad, J.; Riahi, A.; Malek, F. (2012) New generation of functionalized bipyrazolic tripods: synthesis and study of their coordination properties towards metal cations. Tetrahedron, 68: 4037.
  • Fang, X.; Hua, F.; Fernando, Q.; Hua, F. (1996) Comparison of rac- and meso-2,3-dimercaptosuccinic acids for chelation of mercury and cadmium using chemical speciation models. Chemical Research in Toxicology, 9: 284.
  • Al Abdel Hamid, A.; Kanan, S. (2012) Properties of 2-, 3-, and 4-acetylpyridine substituted ruthenium(II) bis(bipyridine) complexes: substituent effect on the electronic structure, spectra, and photochemistry of the complex. Journal of Coordination Chemistry, 65 (3): 420.
  • Al Abdel Hamid, A. (2012) Density-functional analysis of substituent effects on photochemistry of Ru(II)-polypyridyl complexes. Research on Chemical Intermediates. DOI 10.1007/s11164-012-0920-3, Published online first.
  • Angelis, F.D.; Fantacci, S.; Selloni, A. (2004) Time-dependent density functional theory study of the absorption spectrum of [Ru(4,4’- COOH-2,2’- bpy)2(NCS)2] in water solution: influence of the pH. Physics Letters, 389: 204.
  • De Angelis, F.; Fantacci, S.; Selloni, A.; Nazeeruddin, M.K. (2005) Time dependent density functional theory study of the absorption spectrum of the [Ru(4,4’- COO–2,2’-bpy)2(X)2]4- (X=NCS, Cl) dyes in water solution. Chemical Physics Letters, 415: 115.
  • Nazeeruddin, M.K.; De Angelis, F.; Fantacci, S; Selloni, A.; Viscardi, G.; Liska, P.; Ito, S.; Takeru, B.; Gratzel, M. (2005) Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers. Journal of the American Chemical Society, 127: 16835.
  • Nazeeruddin, M.K.; Wang, Q.; Cevey, L.; Aranyos, V.; Liska, P.;Figgemeier, E.; Klein, C.; Hirata, N.; Koops, S.; Haque, S.A.; Durrant, J.R.; Hagfeldt, A.; Lever, A.P.; Gratzel, M. (2006) DFT- INDO/S modeling of new high molar extinction coefficient charge-transfer sensitizers for solar cell applications. Inorganic Chemistry, 45: 787.
  • Ghosh, S.; Chaitanya, G.K.; Bhanuprakash, K. (2006) Electronic Structures and absorption spectra of linkage isomers of trithiocyanato (4,4¢,4¢¢-Tricarboxy-2,2¢:6,2¢¢-terpyridine) ruthenium(II) complexes: A DFT study. Inorganic Chemistry, 45: 7600.
  • Al Abdel Hamid, A.; Kanan, S.; Tahat, A.Z. (2014) DFT analysis of substituent effects on electron-donating efficacy of pyridine. Res Research on Chemical Intermediates. DOI 10.1007/s11164-014-1783-6
  • AlAbdelaHamid, A.; Kanan, S.; Alshboul, T.A.; Jazzazi, T.A.; Al- Nemrat, A.Y. (2016) Chemosensor engineering: effects of halogen attached to carbon-carbon triple bond substituent on absorption energy of Pyridine: DFT-study. Jordan Journal of Chemistry, 11 (1): 8.
  • Cioslowski, J. (1989) A new population analysis based on atomic polar tensors. Journal of the American Chemical Society, 111: 8333.
  • Gross, K.C.; Seybold, P.G.; Hadad, C.M. (2002) Comparison of different atomic charge schemes for predicting pKa variations in substituted anilines and phenols. International Journal of Quantum Chemistry, 90: 445.
  • Gaussian 09, M.J.F., Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H.P.; Izmaylov, A.F.; Bloino, J.; Zheng, G.; Sonnenberg, J.L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J.A.; Peralta, J.E.; Ogliaro, F.; Bearpark, M.; Heyd, J.J.; Brothers, E.; Kudin, K.N.; Staroverov, V.N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J.C.; Iyengar, S.S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J.M.; Klene, M.; Knox, J.E.; Cross, J.B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.E.; Yazyev, O.; Austin, A.J.; Cammi, R.; Pomelli, C.; Ochterski, J.W.; Martin, R.L.; Morokuma, K.; Zakrzewski, V.G.; Voth, G.A.; Salvador, P.; Dannenberg, J.J.; Dapprich, S.; Daniels, A.D.; Farkas, O.; Foresman, J.B.; Ortiz, J.V.; Cioslowski, J.; Fox, D.J. (2009) Gaussian, Inc.: Wallingford CT.
  • Nam, K.H.; Gomez-Salazar, S.; Tavlarides, L.L. (2003) Mercury(II) adsorption from wastewaters using a Thiol functional adsorbent. Industrial & Engineering Chemistry, 42: 1955.
  • Asaduzzaman, A.; Schreckenbach, G. (2011) Chalcogenophilicity of mercury. Inorganic Chemistry, 50: 3791.
  • Bibby, A.; Mercier, L. (2002) Mercury(II) ion adsorption behavior in thiol-functionalized mesoporous silica microspheres. Chemistry of Materials, 14: 1591.
  • Asaduzzaman, A.M.; Khan, M.K.; Schreckenbach, G.; Wang, F. (2010) Computational studies of structural, electronic, spectroscopic, and thermodynamic properties of methyl mercury- amino acid complexes and their Se analogues. Inorganic Chemistry, 49: 870.
  • Cremer, D.; Kraka, E.; Filatov, M. (2008) Bonding in mercury molecules described by the normalized elimination of the small component and coupled cluster theory. Chem. Phys. Chem. 9: 2510.
  • Filatov, M.; Cremer, D. (2004) Revision of the dissociation energies of mercury chalcogenides unusual types of mercury bonding. Chemistry and Chemical Physics, 5: 1547.
  • Peterson, K.A.; Shepler, B.C.; Singleton, J.M. (2007) The group 12 metal chalcogenides: an accurate multireference configuration interaction and coupled cluster study. Molecular Physics, 105: 1139.
  • Wells, A.F. (1984) Structural Inorganic Chemistry, 5th Ed: 1288, Clarendon Press: Oxford. USA
  • Shannon, R.D. (1976) Ionic radii for 6-coordination. Acta Crystallographica Section A: Foundations of Crystallography, 32: 751.
  • Pearson, R.G. (1968) Hard and soft acids and bases, HSAB, Part I. Journal of Chemical Education, 45: 581.
  • Schwarzenbach, G. (1961) The general, selective, and specific formation of complexes by metallic ions. Advances in Inorganic Chemistry and Radiochemistry, 3: 257.
  • Myers, R.T. (1978) Thermodynamics of chelation. Inorganic Chemistry, 17: 952.
  • Calvin, M.; Bailes, R.H. (1946) Stability of chelate compounds II. Polarographic reduction of copper chelates. Journal of the American Chemical Society, 68: 949.
  • Hancock, R.D.; Martell, A.E. (1988) The chelate, cryptate and macrocyclic effects. Comments Inorganic Chemistry 6: 237.
  • Martell, A.E.; Hancock, R.D.; Motekaitis, R.J. (1994) Factors affecting stabilities of chelate, macrocyclic and macrobicyclic complexes in solution Coordination Chemistry Reviews, 133: 39.
  • Adamson, A.W. (1954) A proposed approach to the chelate effect. Journal of the American Chemical Society, 76: 1578.
  • Chung, C.S. (1979) The entropy effect of chelation. Inorganic Chemistry 18: 1321.
  • Vallet, V.; Wahlgren, U.; Grenthe, I. (2003) Chelate effect and thermodynamics of metal complex formation in solution: A quantum chemical study. Journal of the American Chemical Society, 125: 14941.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.