210
Views
2
CrossRef citations to date
0
Altmetric
Extraction

Optimization of ultrasound-assisted extraction for the maximum quantity and quality of phenolics from Stachys lavandulifolia

, &
Pages 1815-1825 | Received 14 Jan 2017, Accepted 21 Feb 2017, Published online: 16 May 2017

References

  • Barbosa-Pereira, L.; Bilbao, A.; Vilches, P.; Angulo, I.;Luis, J.; Fité, B.; Paseiro-Losada, P.; Cruz, J.M. (2014) Brewery waste as a potential source of phenolic compounds: Optimisation of the extraction process and evaluation of antioxidant and antimicrobial activities. Food Chemsitry, 145: 191–197.
  • Chua, S.C.; Tan, C.P.; Mirhosseini, H.; Lai, O.M.; Long, K.; Baharin, B.S. (2009) Optimization of ultrasound extraction condition of phospholipids from palm-pressed fiber. Journal of Food Engineering, 92: 403–409.
  • Shah, M.A.; Bosco, S.J.D.; Mir, S.A. (2014) Plant extracts as natural antioxidants in meat and meat products. Meat Science, 98: 21–33.
  • Hossain, M.B.; Brunton, N.P.; Patras, A.; Tiwari, B.; O’Donnell, C.P; Martin-Diana, A.B.; Barry-Ryan, C. (2012) Optimization of ultrasound assisted extraction of antioxidant compounds from marjoram (Origanum majorana L.) using response surface methodology. Ultrasonics Sonochemistry, 19: 582–590.
  • Liu, Y.; Wei, S.L.; Liao,M.C. (2013) Optimization of ultrasonic extraction of phenoliccompounds from Euryale ferox seed shells using response surface methodology. Industrial Crops and Products, 49: 837–843.
  • Vermerris, W.; Nicholson, R. (2007) Phenolic Compound Biochemistry; Springer Science & Business Media: New York.
  • Şahin, S.; Aybastıer, Ö.; Işık, E. (2013) Optimisation of ultrasonic-assisted extraction of antioxidant compounds from Artemisia absinthium using response surface methodology. Food Chemistry, 141: 1361–1368.
  • Pan, G.Y.; Yu, G.Y.; Zhu, C.H.; Qiao, J.L. (2012) Optimization of ultrasound-assisted extraction (UAE) of flavonoids compounds (FC) from hawthorn seed (HS). Ultrasonics Sonochemistry, 19: 486–490.
  • Tao, Y.; Zhang, Z.H.; Sun, D.W. (2014) Kinetic modeling of ultrasound-assisted extraction of phenolic compounds from grape marc: Influence of acoustic energy density and temperature. Ultrasonics Sonochemistry, 21: 1461–1469.
  • Chemat, F.; Rombaut, N.; Sicaire, A.-G.; Meullemiestre, A.; Fabiano-Tixier, A.-S.; Abert-Vian, M. (2017) Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrasonics Sonochemistry, 34: 540–560.
  • Chandrapala, J.; Oliver, C.; Kentish, S.; Ashokkumar, M. (2012) Ultrasonics in food processing. Ultrasonics Sonochemistry, 19: 975–983.
  • Goula, A.M.; Ververi, M.; Adamopoulou, A.; Kaderides, K. (2017) Green ultrasound-assisted extraction of carotenoids from pomegranate wastes using vegetable oils. Ultrasonics Sonochemistry, 34: 821–830.
  • Dias, A.L.B.; Sergio, C.S.A.; Santos, P., Barbero, G.F.; Rezende, C.A.; Martínez, J. (2017) Ultrasound-assisted extraction of bioactive compounds from dedo de moça pepper (Capsicum baccatum L.): Effects on the vegetable matrix and mathematical modeling. Journal of Food Engineering, 198: 36–44.
  • Goh, K.M.; Lai, O.M.; Abas, F.; Tan, C.P. (2017) Effects of sonication on the extraction of free-amino acids from moromi and application to the laboratory scale rapid fermentation of soy sauce. Food Chemistry, 215: 200–208.
  • Asfaram, A.; Ghaedi, M.; Dashtian, K. (2017) Rapid ultrasound-assisted magnetic microextraction of gallic acid from urine, plasma and water samples by HKUST-1-MOF-Fe3O4-GA-MIP-NPs: UV–vis detection and optimization study. Ultrasonics Sonochemistry, 34: 561–570.
  • Golmohamadi, A.; Möller, G.; Powers, J.; Nindo, C. (2013) Effect of ultrasound frequency on antioxidant activity, total phenolic and anthocyanin content of red raspberry puree. Ultrasonics Sonochemistry, 20 (5): 1316–1323.
  • Boukroufa, M.; Boutekedjiret, C.; Petigny, L.; Rakotomanomana, N.; Chemat, F. (2015) Bio-refinery of orange peels waste: A new concept based on integrated green and solvent free extraction processes using ultrasound and microwave techniques to obtain essential oil, polyphenols and pectin. Ultrasonics Sonochemistry, 24: 72–79.
  • Jacotet-Navarro, M.; Rombaut, N.; Deslis, S.; Fabiano-Tixier, A.-S.; Pierre, F.-X.; Bily, A.; Chemat, F. (2016) Towards a “dry” bio-refinery without solvents or added water using microwaves and ultrasound for total valorization of fruit and vegetable by-products. Green Chemistry, 18: 3106–3115.
  • Li, Y.; Fabiano-Tixier, A.S.; Tomao, V.; Cravotto, G.; Chemat, F. (2013) Green ultrasound-assisted extraction of carotenoids based on the bio-refinery concept using sunflower oil as an alternative solvent. Ultrasonics Sonochemistry, 20 (1): 12–18.
  • Liyana-Pathirana, C.; Shahidi, F. (2005) Optimization of extraction of phenolic compounds from wheat using response surface methodology. Food Chemistry, 93: 47–56.
  • Silva, E.M.; Rogez, H.; Larondelle, Y. (2007) Optimization of extraction of phenolics from Inga edulis leaves using response surface methodology. Separation and Purification Technology, 55: 381–387.
  • Haaland, P.D. (1989) Experimental Design in Biotechnology; Marcel Dekker: NewYork.
  • Bashi, D.S.; Mortazavi, S.A.; Rezaei, K.; Rajaei, A.; Karimkhani, M.M. (2012) Optimization of ultrasound-assisted extraction of phenolic compounds from yarrow (Achillea beibrestinii) by response surface methodology. Food Science and Biotechnology, 21: 1005–1011.
  • Dahmoune, F.; Boulekbache, L.; Moussi, K.; Aoun, O.; Spigno, G.; Madani, K. (2013) Valorization of Citrus limon residues for the recovery of antioxidants: Evaluation and optimization of microwave and ultrasound application to solvent extraction. Industrial Crops and Products, 50: 77–87.
  • Heydari Majd, M.; Rajaei, A.; Salar Bashi, D.; Mortazavi, S.A.; Bolourian, S. (2014) Optimization of ultrasonic-assisted extraction of phenolic compounds from bovine pennyroyal (Phlomidoschema parviflorum) leaves using response surface methodology. Industrial Crops and Products, 57: 195–202.
  • Espada-Bellido, E.; Ferreiro-González, M.; Carrera, C.; Palma, M., Barroso, C.G.; Barbero, G.F. (2017) Optimization of the ultrasound-assisted extraction of anthocyanins and total phenolic compounds in mulberry (Morusnigra) pulp. Food Chemistry, 219: 23–32.
  • Khadivi-Khub, A.; Aghaei, Y.; Mirjalili, M.H. (2014) Phenotypic and phytochemical diversity among different populations of Stachys lavandulifolia. Biochemical Systematics and Ecology, 54: 272–278.
  • Tundis, R.; Peruzzi, L.; Menichini, F. (2014)Phytochemical and biological studies of Stachys species in relation to chemotaxonomy: A review. Phytochemistry, 102: 7–39.
  • Myers, R.H.; Montgomery, D.C. (2002) Response Surface Methodology: Process and Product Optimization Using Design Experiments, 2nd Ed.; John Wiley & Sons: New York.
  • Waterhouse, A.L. (2003) Determination of Total Phenolics, Current Protocols in Food Analytical Chemistry. John Wiley and Sons, Inc.: Hoboken, New Jersey.
  • Hatamnia, A.A.; Abbaspour, N.; Darvishzadeh, R. (2014) Antioxidant activity and phenolic profile of different parts of Bene (Pistacia atlantica subsp. kurdica) fruits. Food Chemistry, 145: 306–311.
  • Vuong, Q.V.; Hirun, S.; Roach, P.D.; Bowyer, M.C.; Phillips, P.A.; Scarlett, C.J. (2013) Effect of extraction conditions on total phenolic compounds and antioxidant activities of Carica papayaleaf aqueous extracts. Journal of Herbal Medicine, 3: 104–111.
  • Carrera, C.; Ruiz-Rodríguez, A.; Palma, M.; Barroso, C.G. (2012) Ultrasound assisted extraction of phenolic compounds from grapes. Analytica Chimica Acta, 732: 100–104.
  • Al-Farsi, M.A.; Lee, C.Y. (2008) Optimization of phenolics and dietary fibre extraction from date seeds. Food Chemistry, 108: 977–985.
  • Tabaraki, R.; Heidarizadi, E.; Benvidi, A. (2012) Optimization of ultrasonic-assisted extraction of pomegranate (Punica granatum L.) peelantioxidants by response surface methodology. Separation and Purification Technology, 98: 16–23.
  • Yang, B.; Liu, X.; Gao, Y.X. (2009) Extraction optimization of bioactive compounds (crocin, geniposide and total phenolic compounds) from Gardenia (Gardenia jasminoides Ellis) fruits with response surface methodology. Innovative Food Science and Emerging Technologies, 10: 610–615.
  • Alberti, A.; Zielinski, A.A.F.; Zardo, D.M.; Demiate, I.M.; Nogueira, A.; Mafra, L.I. (2014) Optimisation of the extraction of phenolic compounds from apples using response surface methodology. Food Chemistry, 149: 151–158.
  • Ilaiyaraja, N.; Likhith, K.R.; Sharath Babu, G.R.; Khanum, F. (2015) Optimisation of extraction of bioactive compounds from Feronia limonia (wood apple) fruit using response surface methodology (RSM). Food Chemistry, 173: 348–354.
  • Daniel, W.W. (1991) Biostatistics: A Foundation for Analysis in the Health Sciences, 5th Ed.; Wiley: New York, NY.
  • Corrales, M.; García, A.F.; Butz, P.; Tauscher, B. (2009) Extraction of anthocyanins from grape skins assisted by high hydrostatic pressure. Journal of Food Engineering, 90: 415–421.
  • Cacace, J.E.; Mazza, G. (2003) Mass transfer process during extraction of phenolic compounds from milled berries. Journal of Food Engineering, 59: 379–389.
  • Biesaga, M. (2011) Influence of extraction methods on stability of flavonoids. Journal of Chromatography A, 1218: 2505–2512.
  • Ghafoor, K.; Choi, Y.H.; Jeon, J.Y.; Jo, I.H. (2009) Optimization of ultrasound-assisted extraction of phenolic compounds, antioxidants, and anthocyanins from grape (Vitis vinifera) seeds. Journal of Agricultural and Food Chemistry, 57: 4988–4994.
  • Jing, P.; Giusti, M.M. (2007) Effects of extraction conditions on improving the yield and quality of an anthocyanin‐rich purple corn (Zea mays L.) color extract. Journal of Food Science, 72: C363–C368.
  • Vongsak, B.; Sithisarn, P.; Mangmool, S.; Thongpraditchote, S.; Wongkrajang, Y.; Gritsanapan, W. (2013) Maximizing total phenolics, total flavonoids contents and antioxidant activity of Moringa oleifera leaf extract by the appropriate extraction method. Industrial Crops and Products, 44: 566–571.
  • Ma, Y.Q.; Chen, J.C.; Liu, D.H.; Ye, X.-Q. (2009) Simultaneous extraction of phenolic compounds of citrus peel extracts: Effect of ultrasound. Ultrasonics Sonochemistry, 16: 57–62.
  • Rajaei, A.; Barzegar, M.; Hamidi, Z.; Sahari, M. (2010) Optimization of extraction conditions of phenolic compounds from pistachio (Pistachia vera) green hull through response surface method. Journal of Agricultural Science and Technology, 12: 605–615.
  • Briars, R.; Paniwnyk, L. (2013) Effect of ultrasound on the extraction of artemisinin from Artemisia annua. Industrial Crops and Products, 42: 595–600.
  • Luque-Garcıa, J.L.; De Castro, M.D.L. (2003) Ultrasound: A powerful tool for leaching. TrAC Trends in Analytical Chemistry, 22: 41–47.
  • Gabaldón-Leyva, C.A.; Quintero-Ramos, A.; Barnard, J.; Balandrán-Quintana, R.R.; Talamás-Abbud,R.; Jiménez-Castro, J. (2007) Effect of ultrasound on the mass transfer and physical changes in brine bellpepper at different temperatures. Journal of Food Engineering, 81: 74–79.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.