228
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Tripodal polyamines: Adjustable receptors for cation extraction

, , , , , , , , & ORCID Icon show all
Pages 1273-1281 | Received 18 Jan 2017, Accepted 02 Mar 2017, Published online: 25 May 2017

References

  • Rydberg, J.; Cox, M.; Musikas, C.; Choppin, G.R. (Ed) (2004) Solvent Extraction Principles and Practice; Marcel Dekker: New York.
  • Wilson, A.M.; Bailey, P.J.; Tasker, P.A.; Turkington, J.R.; Grant, R.A.; Love, J.B. (2014) Solvent extraction: The coordination chemistry behind extractive metallurgy. Chem. Soc. Rev., 43: 123–134.
  • Izatt, R.M.; Izatt, S.R.; Bruening, R.L.; Izatt, N.E.; Moyer, B.A. (2014) Challenges to achievement of metal sustainability in our high-tech society. Chem. Soc. Rev., 43: 2451–2475.
  • Blackman, A.G.;. (2005) The coordination chemistry of tripodal tetraamine ligands. Polyhedron, 24: 1–39.
  • Choi, K.S.; Kang, D.; Lee, J.-E.; Seo, J.; Lee, S.S. (2006) d10 metal complexes of a tripodal amine ligand. Bull. Korean Chem. Soc., 27: 747–750.
  • Kang, D.; Lee, J.Y.; Lee, J.-E.; Lee, S.Y.; Choi, K.S.; Lee, S.S. (2007) Four-, six- and eight-coordinated lead(II) complexes with amine- or amide-type tripodal ligands. Inorg. Chem. Commun., 10: 1105–1108.
  • Komiyama, K.; Furutachi, H.; Nagatomo, S.; Hashimoto, A.; Hayashi, H.; Fujinami, S.; Suzuki, M.; Kitagawa, T. (2004) Dioxygen reactivity of copper(I) complexes with tetradentate tripodal ligands having aliphatic nitrogen donors: Synthesis, structures, and properties of peroxo and superoxo complexes. Bull. Chem. Soc. Jpn. , 77: 59–72.
  • Yoon, I.; Shin, Y.W.; Kim, J.; Park, K.M.; Park, S.B.; Lee, S.S. (2002) A pseudo-cage complex of silver(I) with tripodal tetraamine having benzyl end groups, {tris[2-(benzylamino)ethyl]amine-κ4N}silver(I) perchlorate. Acta Crystallogr., Sect. C: Cryst. Struct. Commun., C58: m165–m166.
  • Pati, A.; Athilakshmi, J.; Ramkumar, V.; Chand, D.K. (2014) A two-dimensional polydodecameric water-chloride cluster enfolding (Hg-Cl-Hg)+ concealed cascade cryptate. CrystEngComm, 16: 6827–6830.
  • Fischmann, A.J.; Warden, A.C.; Black, J.; Spiccia, L. (2004) Synthesis, characterization, and structures of copper(II)-thiosulfate complexes incorporating tripodal tetraamine ligands. Inorg. Chem., 43: 6568–6578.
  • Schatz, M.; Becker, M.; Walter, O.; Liehr, G.; Schindler, S. (2001) Reactivity towards dioxygen of a copper(I) complex of tris(2-benzylaminoethyl)amine. Inorg. Chim. Acta, 324: 173–179.
  • Xie, Y.-S.; Jiang, H.; Liu, X.-T.; Zhou, Z.-Y.; Liu, Q.-L.; Xu, X.-L. (2002) Syntheses and characterization of copper(II) and cobalt(II) complexes with tris[2-(benzylamino)ethyl]amine. Collect. Czech. Chem. Commun., 67: 1647–1657.
  • Jiang, H.; Xie, Y.-S.; Zhou, Z.-Y.; Xu, X.-L.; Liu, Q.-L. (2003) Syntheses, structures and characterization of cobalt(II) and cobalt(III) complexes with N-benzylated polyamines and a terminal azido ligand. J. Coord. Chem., 56: 825–832.
  • Gérard, C.; Mohamadou, A.; Marrot, J.; Brandes, S.; Tabard, A. (2005) Synthesis and characterization of copper complexes containing the tripodal N7 ligand tris{2-[(pyridin-2-ylmethyl)amino]ethyl}amine (=N′-(pyridin-2-ylmethyl)-N,N-bis{2-[(pyridin-2-ylmethyl)amino]ethyl}ethane-1,2-diamine): equilibrium, spectroscopic data, and crystal structures of mono- and trinuclear copper(II) complexes. Helv. Chim. Acta, 88: 2397–2412.
  • Mohamadou, A.; Gérard, C. (2001) Synthesis and characterisation of zinc(II) complexes of tripodal N7 ligands involving pyridine and amine or amide nitrogen donors. Crystal structure of a zinc(II) complex. J. Chem. Soc., Dalton Trans., 3320–3328
  • Morgenstern-Badarau, I.; Lambert, F.; Renault, J.P.; Cesario, M.; Maréchal, J.-D.; Maseras, F. (2000) Amine conformational change and spin conversion induced by metal-assisted ligand oxidation: From the seven-coordinate iron(II)-TPAA complex to the two oxidized iron(II)–(py)3tren isomers. Characterization, crystal structures, and density functional study. Inorg. Chim. Acta, 297: 338–350.
  • Deroche, A.; Morgenstern-Badarau, I.; Cesario, M.; Guilhem, J.; Keita, B.; Nadjo, L.; Houée-Levin., C. (1996) A seven-coordinate manganese(II) complex formed with a single tripodal heptadentate ligand as a new superoxide scavenger. J. Am. Chem. Soc., 118: 4567–4573.
  • Mustapha, A.; Busche, C.; Reglinski, J.; Kennedy, A.R. (2011) The use of hydrogenated Schiff base ligands in the synthesis of multi-metallic compounds II. Polyhedron, 30: 1530–1537.
  • Liu, S.; Rettig, S.J.; Orvig, C. (1992) Polydentate ligand chemistry of Group 13 metals: effects of the size and donor selectivity of metal ions on the structures and properties of aluminum, gallium, and indium complexes with potentially heptadentate (N4O3) amine phenol ligands. Inorg. Chem., 31: 5400–5407.
  • Liu, S.; Wong, E.; Rettig, S.J.; Orvig, C. (1993) Hexadentate N3O3 amine phenol ligands for Group 13 metal ions: Evidence for intrastrand and interstrand hydrogen-bonds in polydentate tripodal amine phenols. Inorg. Chem. , 32: 4268–4276.
  • Mustapha, A.; Reglinski, J.; Kennedy, A.R. (2010) Metal complexes as potential ligands: The deprotonation of aminephenolate metal complexes. Inorg. Chem. Commun., 13: 464–467.
  • Leoncini, A.; Mohapatra, P.K.; Bhattacharyya, A.; Raut, D.R.; Sengupta, A.; Verma, P.K.; Tiwari, N.; Bhattacharyya, D.; Jha, S.; Wouda, A.M.; Huskens, J.; Verboom, W. (2016) Unique selectivity reversal in Am3+-Eu3+ extraction in a tripodal TREN-based diglycolamide in ionic liquid: extraction, luminescence, complexation and structural studies. Dalton Trans., 45: 2476–2484.
  • Wenzel, M.; Wichmann, K.; Gloe, K.; Gloe, K.; Buschmann, H.-J.; Otho, K.; Schroder, M.; Blake, A.J.; Wilson, C.; Mills, A.M.; Lindoy, L.F.; Plieger, P.G. (2010) Interaction of tripodal Schiff-base ligands with silver(I): structural and solution studies. CrystEngComm, 12: 4176–4183.
  • Wichmann, K.; Antonioli, B.; Söhnel, T.; Wenzel, M.; Gloe, K.; Gloe, K.; Price, J.R.; Lindoy, L.F.; Blake, A.J.; Schröder, M. (2006) Polyamine-based anion receptors: Extraction and structural studies. Coord. Chem. rev., 250: 2987–3003.
  • Farrell, D.; Gloe, K.; Gloe, K.; Goretzki, G.; McKee, V.; Nelson, J.; Nieuwenhuyzen, M.; Pal, I.; Stephan, H.; Town, R.M.; Wichmann, K. (2003) Towards promising oxoanion extractants: Azacages and open-chain counterparts. Dalton Trans., 1961–1968.
  • Sánchez-Loredo, M.G.; Wenzel, M.; Gloe, K.; Gloe, K.; Grote, M.; Holdt, H.-J.; Kelling, A. (2008) Polyamines as oxoanion and chlorocomplex receptors. In Solvent Extraction: Fundamentals to Industrial Applications, Moyer, B.A.; (Ed) The Canadian Institute of Mining, Metallurgy and Petroleum: Montreal, 1049–1055.
  • Warr, R.J.; Bell, K.J.; Gadzhieva, A.; Cabot, R.; Ellis, R.J.; Chartres, J.; Henderson, D.K.; Lykourina, E.; Wilson, A.M.; Love, J.B.; Tasker, P.A.; Schröder, M. (2016) A comparison of the selectivity of extraction of [PtCl6]2- by mono-, bi-, and tripodal receptors that address its outer coordination sphere. Inorg. Chem., 55: 6247–6260.
  • Turkington, J.R.; Bailey, P.J.; Love, J.B.; Wilson, A.M.; Tasker, P.A. (2013) Exploiting outer-sphere interactions to enhance metal recovery by solvent extraction. Chem. Commun., 49: 1891–1899.
  • Warr, R.J.; Westra, A.N.; Bell, K.J.; Chartres, J.; Ellis, R.; Tong, C.; Simmance, T.G.; Gadzhieva, A.; Blake, A.J.; Tasker, P.A.; Schröder, M. (2009) Selective extraction and transport of the [PtCl6]2- anion through outer-sphere coordination chemistry. Chem. - Eur. J., 15: 4836–4850.
  • Bell, K.J.; Westra, A.N.; Warr, R.J.; Chartres, J.; Ellis, R.; Tong, C.C.; Blake, A.J.; Tasker, P.A.; Schroeder, M. (2008) Outer-sphere coordination chemistry: selective extraction and transport of the [PtCl6]2- anion. Agnew. Chem., Int. Ed., 47: 1745–1748.
  • Crystal Data for C28H41Cl2CoN4O1.5 (M =587.48 g/mol): monoclinic, space group P21/n (no. 14), a = 8.75202(18) Å, b = 26.0725(4) Å, c = 13.1501(2) Å, β = 100.2365(18)°, V = 2952.91(10) Å3, Z = 4, T = 100.0(2) K, μ(MoKα) = 0.791 mm−1, Dcalc = 1.321 g/cm3, 20423 reflections measured (4.436° ≤ 2Θ ≤ 56.562°), 7332 unique (Rint = 0.0280, Rsigma = 0.0316) which were used in all calculations. The final R1 was 0.0498 (I > 2σ(I)) and wR2 was 0.1274 (all data).
  • Crystal Data for C51H60CuN6O2S4 (M = 980.83 g/mol): monoclinic, space group P21/n (no. 14), a = 9.9880(10) Å, b = 14.8300(10) Å, c = 34.7390(10) Å, β = 97.650(10)°, V = 5099.8(6) Å3, Z = 4, T = 198.15 K, μ(MoKα) = 0.636 mm−1, Dcalc = 1.277 g/cm3, 45936 reflections measured (6.402° ≤ 2Θ ≤ 50.796°), 9264 unique (Rint = 0.0583, Rsigma = 0.0689) which were used in all calculations. The final R1 was 0.0434 (I > 2σ(I)) and wR2 was 0.0907 (all data).
  • Stephan, H.; Kubeil, M.; Gloe, K.; Gloe, K. (2012) Extraction methods. In Shalley, C.A. (Ed) Analytical Methods in Supramolecular Chemistry. Wiley-VCH 105–127.
  • Hooft, R.W.W.;. (1998) Collect: Data Collection Software; Nonius BV: Delft, The Netherlands.
  • Duisenberg, A.J.M.;. (1992) Indexing in single-crystal diffractometry with an obstinate list of reflections. J. Appl. Crystallogr., 25: 92–96.
  • Duisenberg, A.J.M.; Kroon-Batenburg, L.M.J.; Schreurs, A.M.M. (2003) An intensity evaluation method: EVAL-14. J. Appl. Crystallogr., 36: 220–229.
  • CrysAlisPRO. (2016) In Oxford Diffraction /Agilent Technologies UK Ltd: Yarnton, England.
  • Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. (2009) OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr., 42: 339–341.
  • Sheldrick, G.M.;. (2015) SHELXT - Integrated space-group and crystal-structure determination. Acta Crystallogr., Sect. A: Found. Adv., 71: 3–8.
  • Habata, Y.; Kizaki, J.; Hosoi, Y.; Ikeda, M.; Kuwahara, S. (2015) Argentivorous molecules bearing three aromatic side arms: Synthesis of triple-armed cyclens and their complexing property towards Ag+. Dalton Trans., 44: 1170–1177.
  • Price, J.R.; Fainerman-Melnikova, M.; Fenton, R.R.; Gloe, K.; Lindoy, L.F.; Rambusch, T.; Skelton, B.W.; Turner, P.; White, A.H.; Wichmann, K. (2004) Macrocyclic ligand design. Structure-function relationships involving the interaction of pyridinyl-containing, oxygen-nitrogen donor macrocycles with selected transition and post transition metal ions on progressive N-benzylation of their secondary amines. Dalton Trans., 3715–3726.
  • Kim, J.; Ahn, T.-H.; Lee, M.; Leong, A.J.; Lindoy, L.F.; Rumbel, B.R.; Skelton, B.W.; Strixner, T.; Wei, G.; White, A.H. (2002) Metal ion recognition. The interaction of cobalt(II), nickel(II), copper(II), zinc(II), cadmium(II), silver(I) and lead(II) with N-benzylated macrocycles incorporating O2N2-, O3N2- and O2N3-donor sets. J. Chem. Soc. Dalton Trans., 3993–3998.
  • Hofmeister, F.;. (1888) Zur Lehre von der Wirkung der Salze - Zweite Mittheilung. Arch. Exp. Pathol. Pharmakol., 24: 247–260.
  • Irving, H.; Williams, R.J.P. (1953) The stability of transition-metal complexes. J. Chem. Soc., 637: 3192–3210.
  • Addison, A.W.; Rao, T.N.; Reedijk, J.; Van Rijn, J.; Verschoor, G.C. (1984) Synthesis, structure, and spectroscopic properties of copper(II) compounds containing nitrogen-sulfur donor ligands: The crystal and molecular structure of aqua[1,7-bis(N-methylbenzimidazol-2’-yl)-2,6-dithiaheptane]copper(II) perchlorate. J. Chem. Soc., Dalton Trans., 1349–1356.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.