306
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Bis-imidazolium type ion-exchange resin with poly(HIPE) structure for the selective separation of anions from aqueous solutions

&
Pages 1163-1177 | Received 25 Jan 2017, Accepted 08 Sep 2017, Published online: 24 Oct 2017

References

  • Pulko, I.; Krajnc, P. (2012) High internal phase emulsion templating: A path to hierarchically porous functional polymers. Macromolecule Rapid Communicable, 33: 1731–1746.
  • Cameron, N.R. (2005) High internal phase emulsion templating as a route to well-defined porous polymers. Polymer, 46: 1439–1449.
  • Cameron, N.R.; Sherrington, D.C.; Albiston, L.; Gregory, D.P. (1996) Study of the formation of the open-cellular morphology of poly(styrene/divinylbenzene) polyHIPE materials by cryo-SEM. Colloid and Polymer Science, 274: 592–595.
  • Kimmins, S.D.; Cameron, N.R. (2011) Functional porous polymers by emulsion templating: Recent advances. Advancement Function Materials, 21: 211–225.
  • Kovacic, S.; Stefanec, D.; Krajnc, P. (2007) Highly porous open-cellular monoliths from 2-hydroxyethyl methacrylate based high internal phase emulsions (HIPEs): Preparation and void size tuning. Macromolecules, 40: 8056–8060.
  • Hua, Y.; Zhang, S.; Zhu, Y.; Chu, Y.; Chen, J. (2013) Hydrophilic polymer foams with well-defined open-cell structure prepared from pickering high internal phase emulsions. Journal of Polymer Sciences A Polymer Chemical, 51: 2181–2187.
  • Han, D.; Row, K.H. (2010) recent applications of ionic liquids in separation technology. Molecules, 15: 2405˗2426.
  • Xie, L.; Favre-Reguillon, A.; Wang, X.X.; Fu, X.; Vrinat, M.; Lemaire, M. (2009) Selective extraction of neutral nitrogen-containing compounds from straight-run diesel feed using polymer-supported ionic liquid moieties. Industrial Engineering Chemical Research, 48: 3973–3977.
  • Howarth, J. (2000) Oxidation of aromatic aldehydes in the ionic liquid [bmim]PF6. Tetrahedron, 41: 6627–6629.
  • Welton, T.;. (1999) Room-temperature ionic liquids. Solvents for Synthesis and Catalysis Chemical Reviews, 99: 2071−2083.
  • Wilkes, J.S.; Levisky, J.A.; Wilson, R.A.; Hussey, C.L. (1982) dialkylimidazolium chloroaluminate melts: A new class of room-temperature ionic liquids for electrochemistry, spectroscopy, and Synthesis. Inorganic Chemistry, 21: 1263˗1264.
  • Yanes, E.G.; Gratz, S.R.; Baldwin, M.J.; Robison, S.E.; Stalcup, A.M. (2001) Capillary Electrophoretic application of 1-Alkyl-3-methylimidazolium-based ionic liquids. Analytical Chemistry, 73: 3838–3844.
  • Berthod, A.; Ruiz-Angel, M.J.; Carda-Broch, S. (2008) Ionic liquids in separation techniques. Journal Chromatographic A, 1184: 6–18.
  • Armstrong, D.W.; He, L.; Liu, Y.S. (1999) Examination of ionic liquids and their interaction with molecules. When used as stationary phases in gas chromatography. Analytical Chemistry, 71: 3873˗3876.
  • He, L.; Zhang., W.; Zhao, L.; Liu, X.; Jiang, S. (2003) Effect of 1-alkyl-3-methylimidazolium-based ionic liquids as the eluent on the separation of ephedrines by liquid chromatography. Journal of Chromatography. A, 1007: 39–45.
  • Qiu, H.; Jiang, S.; Liu, X.; Zhao, L. (2006) Novel imidazolium stationary phase for high-performance liquid chromatography. Journal Chromatographic A, 1116: 46–50.
  • Qiu, H.; Jiang, Q.; Wei, Z.; Wang, X.; Liu, X.; Jiang, S. (2007) Preparation and evaluation of a silica-based 1-alkyl-3-(propyl-3-sulfonate) imidazolium zwitterionic stationary phase for high-performance liquid chromatography. Journal Chromatographic A, 1163: 63–69.
  • Ruiz-Angel, M.J.; Berthod, A. (2006) Reversed phase liquid chromatography of alkyl imidazolium ionic liquids. Journal Chromatographic A, 1113: 101–108.
  • Moreira, J.C.; Gushikem, Y. (1985) Preconcentration of metal ions on silica gel modified with 3(1-imidazolyl)propyl groups. Analytica Chimica Acta, 176: 263–267.
  • Sun, Y.; Cabovska, B.; Evans, C.E.; Ridgway, T.H.; Stalcup, A.M. (2005) Retention characteristics of a new butylimidazolium-based stationary phase. Analytical and Bioanalytical Chemistry, 382: 728–734.
  • Small, H.; Stevens, T.S.; Bauman, W.C. (1975) Novel ion exchange chromatographic method using conductimetric detection. Analytical Chemistry, 47: 1801˗1809.
  • Edebali, S.; Pehlivan, E. (2014) Evaluation of Cr(III) by ion-exchange resins from aqueous solution: Equilibrium. Thermodynamics and Kinetics. Desalin Water Treat., 52: 7143–7153.
  • Kovačič, S.; Štefanec, D.; Krajnc, P. (2007) Highly porous open-cellular monoliths from 2-hydroxyethyl methacrylate based high internal phase emulsions (HIPEs): Preparation and void size tuning. Macromolecules, 40: 8056–8060.
  • Agrigento, M.J.; Beier, J.T.N.; Baiker, K.A.; Gruttadauria, M. (2012) Higly cross-linked imidazolium salt entrapped magnetic particles: preparation and applications. Journal of Material Chemistry, 22: 20728.
  • Tan, I.A.W.; Ahmad, A.L.; Hameed, B.H. (2009) Adsorption isotherms, kinetics, thermodynamics and desorption studies of 2,4,6-trichlorophenol on oil palm empty fruit bunch-based activated carbon. Journal Hazardous Materials, 164: 473–482.
  • Duranoglu, D.; Trochimczuk, A.W.; Beker, U. (2012) Kinetics and thermodynamics of hexavalent chromium adsorption onto activated carbon derived from acrylonitrile-divinylbenzene copolymer. Chemical Engineering Journal, 187: 193–202.
  • Qiu, B.; Lin, B.; Si, Z.; Qiu, L.; Chu, F.; Zhao, J.; Yan, F. (2012) Bis-imidazolium-based anion-exchange membranes for alkaline fuel cells. Journal of Power Sources, 217: 329–335.
  • Li, W.; Fang, J.; Lv, M.; Chen, C.; Chi, X.; Yang, Y.; Zhang, Y. (2011) Novel anion exchange membranes based on polymerizable imidazolium salt for alkaline fuel cell applications. Journal of Material Chemistry, 21: 11340–11346.
  • Sowmya, A.; Meenakshi, S. (2013) Removal of nitrate and phosphate anions from aqueous solutions using strong base anion exchange resin. Desalination and Water Treat, 51: 7145–7165.
  • Chubar, N.I.; Samanidou, V.F.; Kouts, V.S.; Gallios, G.G.; Kanibolotsky, V.A.; Strelko, V.V.; Zhuravlev, I.Z. (2005) Adsorption of fluoride, chloride, bromide, and bromate ions on a novel ion exchanger. Journal Colloid Interface Sciences, 291: 67–74.
  • Klahn, M.; Mathias, G.; Kotting, C.; Nonella, M.; Schlitter, J.; Gerwert, K.; Tavan, P. (2004) IR spectra of phosphate ions in aqueous solution: predictions of a DFT/MM approach compared with observations. Journal Physical Chemical A, 108: 6186–6194.
  • Raugei, S., et al. (2002) An ab initio study of water molecules in the bromide ion solvation shell. Journal of Chemical Physical, 116: 196–202.
  • Stuart, S.J.;. (1999) Surface curvature effects in the aqueous ionic solvation of the chloride ion. Journal Physical Chemical A, 103: 10300–10307.
  • Salvador, P., et al. (2003) Polarizability of the nitrate anion and its solvation at the air/water interface. Physical Chemical Chemical Physical, 5: 3752–3757.
  • Yadav, G.D.; Jain, S.S. (2003) Polarizability and aqueous solvation of the sulfate dianion. Chemical Physical Letters, 367: 704–710.
  • Shchukina, O.I.; Zatirakha, A.V.; Smolenkov, A.D.; Nesterenko, P.N.; Shpigun, O.A. (2015) Anion exchangers with branched functional ion exchange layersof different hydrophilicity for ion chromatography. Journal Chromatographic A, 1408: 78–86.
  • Chitrakar, R.; Tezuka, S.; Sonoda, A.; Sakane, K.; Ooi, K.; Hirotsu, T. (2006) Phosphate adsorption on synthetic goethite and akaganeite. Journal Colloid Interface Sciences, 298: 602–608.
  • Zatirakha, A.V.; Smolenkov, A.D.; Shpigun, O.A. (2016) Preparation and chromatographic performance of polymer-based anion exchangers for ion chromatography: A review. Analytical Chimica Acta, 904: 33–50.
  • Bocian, S.; Studzińska, S.; Buszewski, B. (2014) Functionalized anion exchange stationary phase for separation of anionic compounds. Talanta, 127: 133–139.
  • Chubar, N.I.; Kanibolotskyy, V.A.; Strelko, V.V.; Gallios, G.G.; Samanidou, V.F.; Shaposhnikova, T.O.; Milgrandt, V.G.; Zhuravlev, I.Z. (2005) Adsorption of phosphate ions on novel inorganic ion exchangers. Colloids Surface A., 255: 55–63.
  • Ruixia, L.; Jinlong, G.; Hongxiao, T. (2002) Adsorption of fluoride phosphate and arsenate ions on a new type of ion exchange fiber. Journal Colloid Interface Sciences, 248: 268–274.
  • Blaney, L.M.; Cinar, S.; SenGupta, A.K. (2007) Hybrid anion exchanger for trace phosphate removal from water and wastewater. Water Research, 41: 1603–1613.
  • Meenakshi, S.; Viswanathan, N. (2007) Identification of selective ion-exchange resin for fluoride sorption. Journal of Colloid and Interface Science, 308: 438–450.
  • Treybal, R.E. (1981) Mass-Transfer Operations, 3rd ed.; McGraw-Hill.
  • Xu, R.; Zhao, A.; Ji, G. (2003) Effect of low-molecular-weight organic anions on surface charge of variable charge soils. Journal Colloid Interface Sciences, 264: 322–326.
  • Jones, D.L.; Brassington, D.S. (1998) Sorption of organic acids in acid soils and its implications in the rhizosphere. European Journal of Soil Sciences, 49: 447–455.
  • Takahashi, H.; Ohba, K.; Kikuchi, K. (2003) Sorption of di- and tricarboxylic acids by an anion-exchange membrane. Journal of Membrane Sciences, 222: 103–111.
  • Takahashi, H.; Ohba, K.; Kikuchi, K. (2003) Sorption of mono-carboxylic acids by an anion-exchange membrane. Biochemical Engineering Journal, 16: 311–315.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.