198
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

An energy-efficient method for mitigating membrane fouling: A novel embodiment of the inverse fluidized bed

, , , , , & show all
Pages 683-695 | Received 18 Apr 2017, Accepted 30 Oct 2017, Published online: 27 Nov 2017

References

  • Fane, A.; Yeo, A.; Law, A.; Parameshwaran, K.; Wicaksana, F.; Chen, V. (2005) Low pressure membrane processes∼ doing more with less energy. Desalination, 185 (1): 159–165. doi: 10.1016/j.desal.2005.04.039
  • Cai, Z.; Wee, C.; Benjamin, M.M. (2013) Fouling mechanisms in low-pressure membrane filtration in the presence of an adsorbent cake layer. Journal Membrane Sciences, 433: 32–38. doi: 10.1016/j.memsci.2013.01.007
  • Lee, N.; Amy, G.; Croue, J.-P.; Buisson, H. (2004) Identification and understanding of fouling in low-pressure membrane (MF/UF) filtration by natural organic matter (NOM). Water Research, 38 (20): 4511–4523. doi: 10.1016/j.watres.2004.08.013
  • Lin, H.; Peng, W.; Zhang, M.; Chen, J.; Hong, H.; Zhang, Y. (2013) A review on anaerobic membrane bioreactors: Applications, membrane fouling and future perspectives. Desalination, 314: 169–188. doi: 10.1016/j.desal.2013.01.019
  • Hilal, N.; Ogunbiyi, O.O.; Miles, N.J.; Nigmatullin, R. (2005) Methods employed for control of fouling in MF and UF membranes: A comprehensive review. Sep Sciences Technological, 40 (10): 1957–2005. doi: 10.1081/SS-200068409
  • Gao, W.; Liang, H.; Ma, J.; Han, M.; Chen, Z.-L.; Han, Z.-S.; Li, G.-B. (2011) Membrane fouling control in ultrafiltration technology for drinking water production: A review. Desalination, 272 (1–3): 1–8. doi: 10.1016/j.desal.2011.01.051
  • Zamani, F.; Chew, J.W.; Akhondi, E.; Krantz, W.B.; Fane, A.G. (2015) Unsteady-state shear strategies to enhance mass-transfer for the implementation of ultrapermeable membranes in reverse osmosis: a review. Desalination, 356: 328–348. doi: 10.1016/j.desal.2014.10.021
  • Cui, Z.; Chang, S.; Fane, A. (2003) The use of gas bubbling to enhance membrane processes. Journal Membrane Sciences, 221 (1): 1–35. doi: 10.1016/S0376-7388(03)00246-1
  • Ji, J.;. (2006) Advanced Submerged Membrane Modules, Systems and Processes. U.S. Patent: US7122121.
  • Wibisono, Y.; Cornelissen, E.R.; Kemperman, A.J.B.; Van Der Meer, W.G.J.; Nijmeijer, K. (2014) Two-phase flow in membrane processes: A technology with a future. Journal Membrane Sciences, 453: 566–602. doi: 10.1016/j.memsci.2013.10.072
  • Gander, M.; Jefferson, B.; Judd, S. (2000) Aerobic MBRs for domestic wastewater treatment: A review with cost considerations. Sep Purification Technological, 18 (2): 119–130. doi: 10.1016/S1383-5866(99)00056-8
  • Zha, F.; Jordan, E.J. (2005) Apparatus and Method for Cleaning Membrane Filtration Modules. U.S. Patent: US6841070.
  • Lorain, O.; Dufaye, P.E.; Bosq, W.; Espenan, J.M. (2010) A new membrane bioreactor generation for wastewater treatment application: Strategy of membrane aeration management by sequencing aeration cycles. Desalination, 250 (2): 639–643. doi: 10.1016/j.desal.2009.09.040
  • Drews, A.;. (2010) Membrane fouling in membrane bioreactors—characterisation, contradictions, cause and cures. Journal Membrane Sciences, 363 (1): 1–28. doi: 10.1016/j.memsci.2010.06.046
  • Meng, F.; Yang, F.; Shi, B.; Zhang, H. (2008) A comprehensive study on membrane fouling in submerged membrane bioreactors operated under different aeration intensities. Sep Purification Technological, 59 (1): 91–100. doi: 10.1016/j.seppur.2007.05.040
  • Cerón Vivas, A.; Morgan Sagastume, J.; Noyola, A. (2012) Intermittent filtration and gas bubbling for fouling reduction in anaerobic membrane bioreactors. Journal Membrane Sciences, 423: 136–142. doi: 10.1016/j.memsci.2012.08.008
  • Martin Garcia, I.; Monsalvo, V.; Pidou, M.; Le Clech, P.; Judd, S.; McAdam, E.; Jefferson, B. (2011) Impact of membrane configuration on fouling in anaerobic membrane bioreactors. Journal Membrane Sciences, 382 (1): 41–49. doi: 10.1016/j.memsci.2011.07.042
  • Liao, B.Q.; Kraemer, J.T.; Bagley, D.M. (2006) Anaerobic membrane bioreactors: Applications and research directions. Critical Reviews Environment Sciences Technological, 36 (6): 489–530. doi: 10.1080/10643380600678146
  • Shim, S.N.; Kim, S.R.; Jo, S.J.; Yeon, K.M.; Lee, C.H. (2015) Evaluation of mechanical membrane cleaning with moving beads in MBR using Box–behnken response surface methodology. Desalination and Water Treatment, 56 (11): 2797–2806.
  • Kwon, D.; Chang, H.; Seo, H.; Kim, J. (2015) Fouling behavior and system performance in membrane bioreactor introduced by granular media as a mechanical cleaning effect on membranes. Desalination and Water Treatment, 57 (19): 9018–9026.
  • Siembida, B.; Cornel, P.; Krause, S.; Zimmermann, B. (2010) Effect of mechanical cleaning with granular material on the permeability of submerged membranes in the MBR process. Water Research, 44 (14): 4037–4046. doi: 10.1016/j.watres.2010.05.016
  • Bixler, H.J.; Rappe, G.C. (1970) Ultrafiltration Process. U.S. Patent: US3541006.
  • Huang, X.; Wei, C.H.; Yu, K.C. (2008) Mechanism of membrane fouling control by suspended carriers in a submerged membrane bioreactor. Journal Membrane Sciences, 309 (1): 7–16. doi: 10.1016/j.memsci.2007.09.069
  • Kim, J.; Kim, K.; Ye, H.; Lee, E.; Shin, C.; McCarty, P.; Bae, J. (2011) Anaerobic fluidized bed membrane bioreactor for wastewater treatment. Environmental Science & Technology, 45 (2): 576–581. doi: 10.1021/es1027103
  • Wang, J.; Wu, B.; Yang, S.; Liu, Y.; Fane, A.G.; Chew, J.W. (2016) Characterizing the scouring efficiency of Granular Activated Carbon (GAC) particles in membrane fouling mitigation via wavelet decomposition of accelerometer signals. Journal Membrane Sciences, 498: 105–115. doi: 10.1016/j.memsci.2015.09.061
  • Wang, J.; Zamani, F.; Cahyadi, A.; Toh, J.Y.; Yang, S.L.; Wu, B.; Liu, Y.; Fane, A.G.; Chew, J.W. (2016) Correlating the hydrodynamics of fluidized granular activated carbon (GAC) with membrane-fouling mitigation. Journal Membrane Sciences, 510: 38–49. doi: 10.1016/j.memsci.2016.03.009
  • Wu, B.; Wang, Y.; Lim, W.; Chew, J.W.; Fane, A.G.; Liu, Y. (2016) Enhanced performance of submerged hollow fibre microfiltration by fluidized granular activated carbon. Journal Membrane Sciences, 499: 47–55. doi: 10.1016/j.memsci.2015.10.050
  • Wu, B.; Zamani, F.; Lim, W.; Liao, D.; Wang, Y.; Liu, Y.; Chew, J.W.; Fane, A.G. (2015) Effect of mechanical scouring by granular activated carbon (GAC) on membrane fouling mitigation. Desalination, 403: 80–87.
  • Ng, C.A.; Sun, D.; Zhang, J.; Wu, B.; Fane, A.G. (2010) Mechanisms of fouling control in membrane bioreactors by the addition of powdered activated carbon. Sep Sciences Technological, 45 (7): 873–889. doi: 10.1080/01496391003667138
  • Aslam, M.; McCarty, P.L.; Bae, J.; Kim, J. (2014) The effect of fluidized media characteristics on membrane fouling and energy consumption in anaerobic fluidized membrane bioreactors. Sep Purification Technological, 132: 10–15. doi: 10.1016/j.seppur.2014.04.049
  • Shimodaira, C.; Yushina, Y.; Kamata, H.; Komatsu, H.; Kurima, A.; Mabu, O.; Tanaka, Y. (1981) Process for Biological Treatment of Waste Water in Downflow Operation. U.S. Patent: US4256573.
  • Nikolov, L.; Karamanev, D. (1987) Experimental study of the inverse fluidized bed biofilm reactor. Canada Journal Chemical Engineering, 65 (2): 214–217. doi: 10.1002/cjce.v65:2
  • Karamanev, D.G.; Nikolov, L.N. (1992) Bed expansion of liquid-solid inverse fluidization. AIChE Journal. American Institute of Chemical Engineers, 38 (12): 1916–1922. doi: 10.1002/(ISSN)1547-5905
  • Ibrahim, Y.A.A.; Briens, C.L.; Magaritis, A.; Bergongnou, M.A. (1996) Hydrodynamic characteristics of a three-phase inverse fluidized-bed column. AIChE Journal. American Institute of Chemical Engineers, 42 (7): 1889–1990. doi: 10.1002/aic.690420710
  • Choi, Y.C.; Kim, D.S.; Park, T.J.; Park, K.K.; Song, S.K. (1995) Wastewater treatment in a pilot scale inverse fluidized-bed biofilm reactor. Biotechnology Technical, 9 (1): 35–40. doi: 10.1007/BF00152997
  • Garcia-Calderon, D.; Buffiere, P.; Moletta, R.; Elmaleh, S. (1998) Anaerobic digestion of wine distillery wastewater in down-flow fluidized bed. Water Research, 32 (12): 3593–3600. doi: 10.1016/S0043-1354(98)00134-1
  • Buffiere, P.; Bergeon, J.-P.; Moletta, R. (2000) The inverse turbulent bed: a novel bioreactor for anaerobic treatment. Water Research, 34 (2): 673–677. doi: 10.1016/S0043-1354(99)00166-9
  • Wang, D.; Silbaugh, T.; Pfeffer, R.; Lin, Y.S. (2010) Removal of emulsified oil from water by inverse fluidization of hydrophobic aerogels. Powder Technology, 203 (2): 298–309. doi: 10.1016/j.powtec.2010.05.021
  • Bi, H.C.; Yin, Z.Y.; Cao, X.H.; Xie, X.; Tan, C.L.; Huang, X.; Chen, B.; Chen, F.T.; Yang, Q.L.; Bu, X.Y.;, et al. (2013) Carbon fiber Aerogel made from raw cotton: a novel, efficient and recyclable sorbent for oils and organic solvents. Advanced Materials, 25 (41) : 5916–5921. doi: 10.1002/adma.201302435
  • Chang, I.-S.; Judd, S.J. (2002) Air sparging of a submerged MBR for municipal wastewater treatment. Processing Biochemical, 37 (8): 915–920. doi: 10.1016/S0032-9592(01)00291-6
  • Le-Clech, P.; Chen, V.; Fane, T.A. (2006) Fouling in membrane bioreactors used in wastewater treatment. Journal Membrane Sciences, 284 (1): 17–53. doi: 10.1016/j.memsci.2006.08.019
  • White, F.M.;. (2003) Fluid Mechanics. New York: McGraw-Hill.
  • Mercier, M.; Fonade, C.; Lafforgue-Delorme, C. (1997) How slug flow can enhance the ultrafiltration flux in mineral tubular membranes. Journal Membrane Sciences, 128 (1): 103–113. doi: 10.1016/S0376-7388(96)00317-1
  • Mercier, M.; Maranges, C.; Fonade, C.; Lafforgue‐Delorme, C. (1998) Yeast suspension filtration: flux enhancement using an upward gas/liquid slug flow—application to continuous alcoholic fermentation with cell recycle. Biotechol Bioengineering, 58 (1): 47–57. doi: 10.1002/(SICI)1097-0290(19980405)58:1<47::AID-BIT5>3.0.CO;2-U
  • Engineering, A.C.; Way, H.; Dt11, D. (1992) The treatment of oily water by coalescing. Filtration and Separation, 29 (4): 295–300. doi: 10.1016/0015-1882(92)80349-N
  • Mueller, J.; Cen, Y.; Davis, R.H. (1997) Crossflow microfiltration of oily water. Journal Membrane Sciences, 129 (2): 221–235. doi: 10.1016/S0376-7388(96)00344-4
  • Singh, V.; Purkait, M.; Das, C. (2011) Cross-flow microfiltration of industrial oily wastewater: experimental and theoretical consideration. Sep Sciences Technological, 46 (8): 1213–1223. doi: 10.1080/01496395.2011.560917
  • Emani, S.; Uppaluri, R.; Purkait, M.K. (2014) Cross flow microfiltration of oil–water emulsions using kaolin based low cost ceramic membranes. Desalination, 341: 61–71. doi: 10.1016/j.desal.2014.02.030

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.