614
Views
16
CrossRef citations to date
0
Altmetric
Articles

Elimination of boron and lithium coexisting in geothermal water by adsorption-membrane filtration hybrid process

ORCID Icon, , , , , ORCID Icon & show all
Pages 856-862 | Received 09 Jun 2017, Accepted 13 Nov 2017, Published online: 27 Nov 2017

References

  • Wang, B.; Guo, X.; Bai, P. (2014) Removal technology of boron dissolved in aqueous solutions: A review. Colloids and Surfaces A: Physicochem. Eng. Aspects, 444: 338–344.
  • Zelmanov, G.; Semiat, R. (2014) Boron removal from water and its recovery using iron (Fe+3) oxide/hydroxide-based nanoparticles (NanoFe) and NanoFe-impregnated granular activated carbon as adsorbent. Desalination, 333: 107–117.
  • World Health Organization. (2011) Guidelines for Drinking-Water Quality, Chapter 12 Chemical Fact Sheets, 4th edn.; Geneva: WHO.
  • Wolska, J.; Bryjak, M. (2013) Methods for boron removal from aqueous solutions: A review. Desalination, 310: 18–24.
  • Kabay, N.; Yilmaz, I.; Bryjak, M.; Yuksel, M. (2006) Removal of boron from aqueous solutions by hybrid ion exchange-membrane process. Desalination, 198: 158–165.
  • Kabay, N.; Yilmaz-Ipek, I.; Soroko, I.; Makowski, M.; Kirmizisakal, O.; Yag, S.; Bryjak, M.; Yuksel, M. (2009) Removal of boron from Balcova geothermal water by ion-exchange-microfiltration hybrid process. Desalination, 241: 167–173.
  • Yilmaz-Ipek, I.; Kabay, N.; Yuksel, M.; Kirmizisakal, O.; Bryjak, M. (2009) Removal of Boron from Balçova-Izmir Geothermal Water by Ion Exchange Process: batch and Column Processes. Chemical Engineering Communication, 196: 277–289.
  • Yilmaz-Ipek, I.; Koseoglu, P.; Yuksel, U.; Yasar, N.; Yolseven, G.; Yuksel, M.; Kabay, N. (2010) Separation of boron from geothermal water using a boron selective macroporous weak base anion exchange resin. Separation Science and Technology, 45: 809–813.
  • Kabay, N.; Köseoğlu, P.; Yavuz, E.; Yüksel, Ü.; Yüksel, M. (2013) An innovative integrated system for boron removal from geothermal water using RO process and ion exchange-ultrafiltration hybrid method. Desalination, 316: 1–7.
  • Swain, B. (2017) Recovery and recycling of lithium: A review. Separation and Purification Technology, 172: 388–403.
  • Cao, J.; Shi, J.; Hu, Y.; Wu, M.; Ouyang, C.; Xu, B. (2017) Lithium ion adsorption and diffusion on black phosphorene nanotube: A first-principles study. Applied Surface Science, 392: 88–94.
  • Xu, X.; Chen, Y.; Wan, P.; Gasem, K.; Wang, K.; He, T.; Adidharma, H.; Fan, M. (2016) Extraction of lithium with functionalized lithium ion-sieves. Progress in Materials Science, 84: 276–313.
  • Singh, M.; Kaiser, J.; Hahn, H. (2016) A systematic study of thick electrodes for high energy lithium ion batteries. Journal of Electroanalytical Chemistry, 782: 245–249.
  • Shi, C.; Jing, Y.; Xiao, J.; Wang, X.; Yao, Y.; Jia, Y. (2017) Solvent extraction of lithium from aqueous solution using non-fluorinated functionalized ionic liquids as extraction agents. Separation and Purification Technology, 172: 473–479.
  • Park, J.; Sato, H.; Nishihama, S.; Yoshizuka, K. (2012) Lithium recovery from geothermal water by combined adsorption methods. Solvent Extraction and Ion Exchange, 30: 398–404.
  • Park, J.; Sato, H.; Nishihama, S.; Yoshizuka, K. (2012) Separation and recovery of lithium from geothermal water by sequential adsorption process with λ -MnO2 and TiO2. Ion Exchange Letters, 5: 1–5.
  • Zandevakili, S.; Ranjbar, M.; Ehteshamzadeh, M. (2014) Recovery of lithium from Urmia Lake by a nanostructure MnO2 ion sieve. Hydrometallurgy, 149: 148–152.
  • Kitajou, A.; Suzuki, T.; Nishihama, S.; Yoshizuka, K. (2003) Selective recovery of lithium from seawater using a novel MnO2 type adsorbent II: Enhancement of lithium ion selectivity of the adsorbent. Ars Separatoria Acta, 2: 97–106.
  • Kitajou, A.; Holba, M.; Suzuki, T.; Nishihama, S.; Yoshizuka, K. (2005) Selective recovery system of lithium from seawater using a novel granulated λ-MnO2 adsorbent. Journal of Ion Exchange, 16: 49–54.
  • Yu, Q.; Sasaki, K.; Hirajima, T. (2013) Bio-templated synthesis of lithium manganese oxide microtubes and their application in Li+ recovery. Journal of Hazardous Materials, 262: 38–47.
  • Koltuniewicz, A.B.; Witek, A.; Bezak, K. (2004) Efficiency of membrane-sorption integrated processes. Journal of Membrane Science, 239: 129–141.
  • Yoshizuka, K.; Fukui, K.; Inoue, K. (2002) Selective recovery of lithium from seawater using a novel MnO2 type adsorbent. Ars Separatoria Acta, 1: 79–86.
  • Li, L.; Qu, W.; Liu, F.; Zhao, T.; Zhang, X.; Chen, R.; Wu, F. (2014) Surface modification of spinel λ -MnO2 and its lithium adsorption properties from spent lithium ion batteries. Applied Surface Science, 315: 59–65.
  • Recepoğlu, Y.K.; Kabay, N.; Yılmaz-İpek, İ.; Arda, M.; Yüksel, M.; Yoshizuka, K.; Nishihama, S. (2017) Deboronation of geothermal water using N-methyl-D-glucamine based chelating resins and a novel fiber adsorbent: Batch and column studies. Journal of Chemical Technology and Biotechnology, 92 (7): 1540–1547.
  • Bryjak, M.; Wolska, J.; Soroko, I.; Kabay, N. (2009) Adsorption-membrane filtration process in boron removal from first stage seawater RO permeate. Desalination, 241: 127–132.
  • Dambies, L.; Salinaro, R.; Alexandratos, S.D. (2004) Immobilized N-methyl-D-glucamine as an arsenate-selective resin. Environmental Science & Technology, 38: 6139–6146.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.