173
Views
5
CrossRef citations to date
0
Altmetric
Articles

Investigation of the relationship between sliding process measurement and induction time test of low rank coal particles in the surfactant solutions

ORCID Icon, , &
Pages 973-981 | Received 17 Sep 2017, Accepted 13 Nov 2017, Published online: 27 Nov 2017

References

  • Rao, Z.; Zhao, Y.; Huang, C.; Duan, C.; He, J. (2015) Recent developments in drying and dewatering for low rank coals. Progress in Energy and Combustion Science, 46: 1–11. 10.1016/j.pecs.2014.09.001
  • Albijanic, B.; Ozdemir, O.; Nguyen, A.V.; Bradshaw, D. (2010) A review of induction and attachment times of wetting thin films between air bubbles and particles and its relevance in the separation of particles by flotation. Advances in Colloid and Interface Science, 159 (1): 1–21. 10.1016/j.cis.2010.04.003
  • Gu, G.; Xu, Z.; Nandakumar, K.; Masliyah, J. (2003) Effects of physical environment on induction time of air–bitumen attachment. International Journal Miner Processing, 69 (1): 235.
  • Yoon, R.; Yordan, J. (1991) Induction time measurements for the quartz-amine flotation system. Colloid Interface Science, 141 (2): 374.
  • Sutherland, K.L.;. (1948) Physical chemistry of flotation; kinetics of the flotation process. Journal of Physical & Colloid Chemistry, 52 (2): 394.
  • Chander, S.; Polat, H.; Mohal, B. (1994) Flotation and wettability of a low-rank coal in the presence of surfactants. Miner Metall Proceedings, 11 (1): 55.
  • Wójcik, W.; Jańczuk, B.; Bialopiotrowicz, T. (1990) The relationship between the floatability of low-rank coal and its adhesion to air bubbles in aqueous diacetone alcohol solutions. Sep Sciences Technological, 25 (6): 689.
  • Xia, W.C.; Yang, J.G.; Zhu, B. (2013) The improvement of grindability and floatability of oxidized coal by microwave pre-treatment. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 36 (1): 23.
  • Xia, W.; Yang, J.; Zhao, Y. (2012) Improving floatability of taixi anthracite coal of mild oxidation by grinding. Physicochem Problems Mi, 48 (2): 393.
  • Majka-Myrcha, B.; Girczys, J. (1993) The effect of redox conditions on the floatability of coal. Coal Preparation, 13 (1–2): 21.
  • Harris, G.H.; Diao, J.; Fuerstenau, D.W. (1995) Coal flotation with nonionic surfactants. Coal Preparation, 16 (3): 135.
  • Jia, R.; Harris, G.H.; Fuerstenau, D.W. (2000) An improved class of universal collectors for the flotation of oxidized and/or low-rank coal. International Journal Miner Processing, 58 (1–4): 99.
  • Aplan, F.F.;. (1993) Coal properties dictate coal flotation strategies. MiningEng Ineering, 45 (1): 83.
  • Sis, H.; Ozbayoglu, G.; Sarikaya, M. (2003) Comparison of non-ionic and ionic collectors in the flotation of coal fines. Miner Engineering, 16 (4): 399.
  • Vamvuka, D.; Agridiotis, V. (2001) The effect of chemical reagents on lignite flotation. International Journal Miner Processing, 61 (3): 209.
  • Kelebek, S.; Demir, U.; Sahbaz, O.; Ucar, A.; Cinar, M.; Karaguzel, C.; Oteyaka, B. (2008) The effects of dodecylamine, kerosene and pH on batch flotation of Turkey’s Tuncbilek coal. International Journal Miner Processing, 88 (3–4): 65.
  • Qu, J.; Tao, X.; He, H.; Zhang, X.; Xu, N.; Zhang, B. (2014) Synergistic effect of surfactants and a collector on the flotation of a low-rank coal. International Journal of Coal Preparation & Utilization, 35 (1): 14.
  • Bustamante, H.; Woods, G. (1984) Interaction of dodecylamine and sodium dodecyl sulphate with a low-rank bituminous coal. Colloids & Surfaces, 12 (3–4): 381.
  • Burkin, A.R.; Bramley, J.V. (2010) Flotation with insoluble reagents. II. Effects of surface-active reagents on the spreading of oil at coal-water interfaces. Journal of Chemical Technology & Biotechnology Biotechnology, 13 (10): 417.
  • Cebeci, Y.;. (2002) The investigation of the floatability improvement of Yozgat Ayrıdam lignite using various collectors. Fuel, 81 (3): 281.
  • Burkin, A.R.; Bramley, J.V. (2010) Flotation with insoluble reagents. I. Collision and spreading behaviour in the coal‐oil‐water system. Journal of Chemical Technology & Biotechnology Biotechnology, 11 (8): 300.
  • Su, L.; Xu, Z.; Masliyah, J. (2006) Role of oily bubbles in enhancing bitumen flotation. Miner Engineering, 19 (6–8): 641.
  • Zhang, Z.; Liu, J. (2015) Effect of calcium ions on induction time between a coal particle and air bubble. International Journal of Coal Preparation & Utilization, 35 (1): 31.
  • Jowett, A. (1980) Formation and disruption of particle-bubble aggregates in flotation. Fine Particles Processing, 1:720.
  • Schulze, H.J.; Radoev, B.; Geidel, T.; Stechemesser, H.; Töpfer, E. (1989) Investigations of the collision process between particles and gas bubbles in flotation: A theoretical analysis ☆. International Journal Miner Processing, 27 (27): 263.
  • Nguyen, A.V.; Ralston, J.; Schulze, H.J. (1998) On modelling of bubble–particle attachment probability in flotation. International Journal Miner Processing, 53 (4): 225.
  • Sven-Nilsson. (1934) Effect of contact time between mineral and air bubbles on flotation. Colloid and Polymer Science, 69 (2): 230.
  • Xia, W.; Xie, G. (2014) Changes in the hydrophobicity of anthracite coals before and after high temperature heating process. Powder Technological, 264:31.
  • Xia, W.; Yang, J.; Liang, C. (2014) Investigation of changes in surface properties of bituminous coal during natural weathering processes by XPS and SEM. Applications Surf Sciences, 293:293.
  • Pietrzak, R.;. (2009) XPS study and physico-chemical properties of nitrogen-enriched microporous activated carbon from high volatile bituminous coal. Fuel, 88 (10): 1871.
  • Desimoni, E.; Casella, G.I.; Salvi, A.M. (1992) XPS/XAES study of carbon fibres during thermal annealing under UHV conditions. Carbon, 30 (4): 521.
  • Fiedler, R.; Bendler, D. (1992) ESCA investigations on Schleenhain lignite lithotypes and the hydrogenation residues. Fuel, 71 (4): 381.
  • Kosior, D.; Zawala, J.; Niecikowska, A.; Malysa, K. (2015) Influence of non-ionic and ionic surfactants on kinetics of the bubble attachment to hydrophilic and hydrophobic solids. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 470:333.
  • Krasowska, M.; Krastev, R.; Rogalski, M.; Malysa, K. (2007) Air-facilitated three-phase contact formation at hydrophobic solid surfaces under dynamic conditions. Langmuir the Acs Journal of Surfaces & Colloids, 23 (2): 549.
  • Kosior, D.; Zawala, J.; Malysa, K. (2014) Influence of n-octanol on the bubble impact velocity, bouncing and the three phase contact formation at hydrophobic solid surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 441:788.
  • Ceylan, K.; Küçük, M.Z. (2004) Effectiveness of the dense medium and the froth flotation methods in cleaning some Turkish lignites. Energy Conversion & Management, 45 (9–10): 1407.
  • Brennan, R.F. (2011) Coal properties dictate coal flotation strategies. Advancement Materials, 23 (4): 442.
  • Aktas, Z.; Woodburn, E.T. (1994) The adsorption behaviour of nonionic reagents on two low rank British coals. Miner Engineering, 7 (9): 1115.
  • Helbig, C.; Baldauf, H. (1997) Studies on Efficiency and Adsorption Mecanism of Mixtures Anionic and Cationic Reagents in Flotation, XXIMPC: Auchen, Germany. 331.
  • Helbig, C.; Baldauf, H.; Mahnke, J.; Stöckelhuber, K.W.; Schulze, H.J. (1998) Investigation of Langmuir monofilms and flotation experiments with anionic/cationic collector mixtures. International Journal Miner Processing, 53 (3): 135.
  • Rosen, M.J.; Kunjappu, J.T. (2012) Surfactants and Interfacial Phenomena, Canada: John Wiley & Sons.
  • Ye, Y.; Khandrika, S.M.; Miller, J.D. (1989) Induction-time measurements at a particle bed. International Journal Miner Processing, 25 (3): 221.
  • Fuerstenau, D.W.; Rosenbaum, J.M.; Laskowski, J. (1983) Effect of surface functional groups on the flotation of coal. Colloids & Surfaces, 8 (2): 153.
  • Peng, F.F.;. (1996) Surface energy and induction time of fine coals treated with various levels of dispersed collector and their correlation to flotation responses. Energy Fuel, 10 (6): 1202.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.