288
Views
12
CrossRef citations to date
0
Altmetric
Articles

Synthesis of “L-cysteine–graphene oxide” hybrid by new methods and elucidation of its uptake properties for Hg(II) ion

, , , &
Pages 843-855 | Received 17 Jul 2017, Accepted 14 Dec 2017, Published online: 26 Dec 2017

References

  • Krishnan, K.A.; Anirudhan, T. (2002) Removal of mercury (II) from aqueous solutions and chlor-alkali industry effluent by steam activated and sulphurised activated carbons prepared from bagasse pith: kinetics and equilibrium studies. Journal of Hazardous Materials, 92 (2): 161–183.
  • Ekinci, E.; Budinova, T.; Yardim, F.; Petrov, N.; Razvigorova, M.; Minkova, V. (2002) Removal of mercury ion from aqueous solution by activated carbons obtained from biomass and coals. Fuel Processing Technology, 77: 437–443.
  • Fu, F.; Wang, Q. (2011) Removal of heavy metal ions from wastewaters: a review. Journal of Environmental Management, 92 (3): 407–418.
  • Shafeeq, A.; Muhammad, A.; Sarfraz, W.; Toqeer, A.; Rashid, S.; Rafiq, M. (2012) Mercury Removal Techniques for Industrial Waste Water, International Journal of Environmental and Ecological Engineering.6(12), 1164–1167.
  • Zhang, F.-S.; Nriagu, J.O.; Itoh, H. (2005) Mercury removal from water using activated carbons derived from organic sewage sludge. Water Research, 39 (2): 389–395.
  • Jeon, C.; Park, K.H. (2005) Adsorption and desorption characteristics of mercury (II) ions using aminated chitosan bead. Water Research, 39 (16): 3938–3944.
  • (Xu, L.; Wang, J. (2017) The application of graphene-based materials for the removal of heavy metals and radionuclides from water and wastewater. Critical Reviews in Environmental Science and Technology, 47 (12): 1042–1105.
  • Jie, W.; Hao, J. (2014) Graphene-based hybrid structures combined with functional materials of ferroelectrics and semiconductors. Nanoscale, 6 (12): 6346–6362.
  • Machado, B.F.; Serp, P. (2012) Graphene-based materials for catalysis. Catalysis Science & Technology, 2 (1): 54–75.
  • Xiang, Q.; Yu, J. (2013) Graphene-based photocatalysts for hydrogen generation. The Journal of Physical Chemistry Letters, 4 (5): 753–759.
  • Low, J.; Yu, J.; Ho, W. (2015) Graphene-based photocatalysts for CO2 reduction to solar fuel. The Journal of Physical Chemistry Letters, 6 (21): 4244–4251.
  • Wang, X.; Liu, B.; Lu, Q.; Qu, Q. (2014) Graphene-based materials: fabrication and application for adsorption in analytical chemistry. Journal of Chromatography A, 1362: 1–15.
  • Madadrang, C.J.; Kim, H.Y.; Gao, G.; Wang, N.; Zhu, J.; Feng, H.; Gorring, M.; Kasner, M.L.; Hou, S. (2012) Adsorption behavior of EDTA-graphene oxide for Pb (II) removal. ACS Applied Materials & Interfaces, 4 (3): 1186–1193.
  • Yao, H.B.; Ge, J.; Wang, C.F.; Wang, X.; Hu, W.; Zheng, Z.J.; Ni, Y.; Yu, S.H. (2013) A flexible and highly pressure-sensitive graphene–polyurethane sponge based on fractured microstructure design. Advanced Materials, 25 (46): 6692–6698.
  • Varma, S.; Sarode, D.; Wakale, S.; Bhanvase, B.; Deosarkar, M. (2013) Removal of nickel from waste water using graphene nanocomposite. International Journal of Chemical and Physical Sciences, 2: 132–139.
  • Chen, S.; Hong, J.; Yang, H.; Yang, J. (2013) Adsorption of uranium (VI) from aqueous solution using a novel graphene oxide-activated carbon felt composite. Journal of Environmental Radioactivity, 126: 253–258.
  • Li, Q.; Wang, Z.; Fang, D.-M.; Qu, H.-Y.; Zhu, Y.; Zou, H.-J.; Chen, Y.-R.; Du, Y.-P.; Hu, H.-L. (2014) Preparation, characterization, and highly effective mercury adsorption of L-cysteine-functionalized mesoporous silica. New Journal of Chemistry, 38 (1): 248–254.
  • Chaves, M.R.; Valsaraj, K.T.; DeLaune, R.D.; Gambrell, R.P.; Buchler, P.M. (2011) Mercury uptake by biogenic silica modified with L‐cysteine. Environmental Technology, 32 (14): 1615–1625.
  • Chaves, M.R.; Valsaraj, K.T.; Buchler, P.M.; Gambrell, R.P.; DeLaune, R.D. (2011) Modification of Mackinawite with L-Cysteine: Synthesis, Characterization, and Implications to Mercury Immobilization in Sediment, INTECH Open Access Publisher.
  • Nam, K.H.; Gomez-Salazar, S.; Tavlarides, L.L. (2003) Mercury (II) adsorption from wastewaters using a thiol functional adsorbent. Industrial & Engineering Chemistry Research, 42 (9): 1955–1964.
  • Bibby, A.; Mercier, L. (2002) Mercury (II) ion adsorption behavior in thiol-functionalized mesoporous silica microspheres. Chemistry of Materials, 14 (4): 1591–1597.
  • Merrifield, J.D.; Davids, W.G.; MacRae, J.D.; Amirbahman, A. (2004) Uptake of mercury by thiol-grafted chitosan gel beads. Water Research, 38 (13): 3132–3138.
  • Aguado, J.; Arsuaga, J.M.; Arencibia, A. (2005) Adsorption of aqueous mercury (II) on propylthiol-functionalized mesoporous silica obtained by cocondensation. Industrial & Engineering Chemistry Research, 44 (10): 3665–3671.
  • Gao, W.; Majumder, M.; Alemany, L.B.; Narayanan, T.N.; Ibarra, M.A.; Pradhan, B.K.; Ajayan, P.M. (2011) Engineered graphite oxide materials for application in water purification. ACS Applied Materials & Interfaces, 3 (6): 1821–1826.
  • Liu, Y.; Li, Y.; Yan, X.P. (2008) Preparation, characterization, and application of L‐cysteine functionalized multiwalled carbon nanotubes as a selective sorbent for separation and preconcentration of heavy metals. Advanced Functional Materials, 18 (10): 1536–1543.
  • Muralikrishna, S.; Sureshkumar, K.; Varley, T.S.; Nagaraju, D.H.; Ramakrishnappa, T. (2014) In situ reduction and functionalization of graphene oxide with L-cysteine for simultaneous electrochemical determination of cadmium (II), lead (II), copper (II), and mercury (II) ions. Analytical Methods, 6 (21): 8698–8705.
  • Chen, D.; Li, L.; Guo, L. (2011) An environment-friendly preparation of reduced graphene oxide nanosheets via aminoacid. Nanotechnology, 22 (32): 325601.
  • Shen, J.; Yan, B.; Shi, M.; Ma, H.; Li, N.; Ye, M. (2011) Synthesis of graphene oxide-based biocomposites through diimide-activated amidation. Journal of Colloid and Interface Science, 356 (2): 543–549.
  • Bollen, A.; Biester, H. (2011) Mercury extraction from contaminated soils by L-cysteine: species dependency and transformation processes. Water, Air, & Soil Pollution, 219 (1–4): 175–189.
  • Dişbudak, A.; Bektaş, S.; Patır, S.; Genç, Ö.; Denizli, A. (2002) Cysteine-metal affinity chromatography: determination of heavy metal adsorption properties. Separation and Purification Technology, 26 (2): 273–281.
  • He, F.; Wang, W.; Moon, J.-W.; Howe, J.; Pierce, E.M.; Liang, L. (2012) Rapid removal of Hg (II) from aqueous solutions using thiol-functionalized Zn-doped biomagnetite particles. ACS Applied Materials & Interfaces, 4 (8): 4373–4379.
  • Zhang, L.-B.; Wang, J.-Q.; Wang, H.-G.; Xu, Y.; Wang, Z.-F.; Li, Z.-P.; Mi, Y.-J.; Yang, S.-R. (2012) Preparation, mechanical and thermal properties of functionalized graphene/polyimide nanocomposites. Composites Part A: Applied Science and Manufacturing, 43 (9): 1537–1545.
  • Li, Z.; Chen, F.; Yuan, L.; Liu, Y.; Zhao, Y.; Chai, Z.; Shi, W. (2012) Uranium (VI) adsorption on graphene oxide nanosheets from aqueous solutions. Chemical Engineering Journal, 210: 539–546.
  • Kuila, T.; Bose, S.; Mishra, A.K.; Khanra, P.; Kim, N.H.; Lee, J.H. (2012) Chemical functionalization of graphene and its applications. Progress in Materials Science, 57 (7): 1061–1105.
  • Carpio, I.E.M.; Mangadlao, J.D.; Nguyen, H.N.; Advincula, R.C.; Rodrigues, D.F. (2014) Graphene oxide functionalized with ethylenediamine triacetic acid for heavy metal adsorption and anti-microbial applications. Carbon, 77: 289–301.
  • Mattigod, S.V.; Feng, X.; Fryxell, G.E.; Liu, J.; Gong, M. (1999) Separation of complexed mercury from aqueous wastes using self-assembled mercaptan on mesoporous silica. Separation Science and Technology, 34 (12): 2329–2345.
  • Kumar, A.S.K.; Jiang, S.-J.; Tseng, W.-L. (2016) Facile synthesis and characterization of thiol-functionalized graphene oxide as effective adsorbent for Hg (II). Journal of Environmental Chemical Engineering, 4 (2): 2052–2065.
  • El-Fattah, M.A.; El Saeed, A.M.; Dardir, M.; El-Sockary, M.A. (2015) Studying the effect of organo-modified nanoclay loading on the thermal stability, flame retardant, anti-corrosive and mechanical properties of polyurethane nanocomposite for surface coating. Progress in Organic Coatings, 89: 212–219.
  • Ashhari, S.; Sarabi, A.A. (2017) Effects of organically modified nanoclay particles on the mechanical properties of aliphatic polyurethane/clay nanocomposite coatings. Polymer Composites, 38(6)1167–1174.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.