300
Views
30
CrossRef citations to date
0
Altmetric
Original Articles

Experimental study on functional graphene oxide containing many primary amino groups fast-adsorbing heavy metal ions and adsorption mechanism

, &
Pages 1666-1677 | Received 11 Aug 2017, Accepted 30 Jan 2018, Published online: 15 Feb 2018

References

  • Sharma, R.K.; Agrawal, M. (2005) Biological effects of heavy metals: An overview. Journal of environmental Biology, 26: 301–313.
  • Simonsen, L.O.; Harbak, H.; Bennekou, P. (2012) Cobalt metabolism and toxicology - A brief update. The Science of the Total Environment, 432: 210–215. doi:10.1016/j.scitotenv.2012.06.009
  • Hesse, M.C.S.; Santos, B.; Selesu, N.F.H.; Corrêa, D.O.; Mariano, A.B.; Vargas, J.V.C.; Vieira, R.B. (2017) Optimization of flocculation with tannin-based flocculant in the water reuse and lipidic production for the cultivation of Acutodesmus obliquus. Separation Science and Technology, 52 (5): 936–942. doi:10.1080/01496395.2016.1269130
  • Wang, J.; Chen, C. (2014) Chitosan-based biosorbents: Modification and application for biosorption of heavy metals and radionuclides. Bioresource technology, 160: 129–141. doi:10.1016/j.biortech.2013.12.110
  • Goek, C.; Aytas, S.; Sezer, H. (2017) Modeling uranium biosorption by Cystoseira sp. and application studies. Separation Science and Technology, 52 (5): 792–803. doi:10.1080/01496395.2016.1267212
  • Wu, Z.B.; Ni, W.M.; Guan, B.H. (2008) Application of chitosan as flocculant for coprecipitation of Mn(II) and suspended solids from dual-alkali FGD regenerating process. Journal of Hazardous Materials, 152: 757–764. doi:10.1016/j.jhazmat.2007.07.042
  • Mokhter, M.A.; Lakard, S.; Magnenet, C.; Euvrard, M.; Lakard, B. (2017) Preparation of polyelectrolyte-modified membranes for heavy metal ions removal. Environmental technology, 38: 1–10. doi:10.1080/09593330.2016.1267265
  • Ng, Z.-G.; Lim, J.-W.; Iskandar, S.; Ridzuan, P.D.; Isa, M.H.; Iskandar, S.; Pasupuleti, V.R.; Yunus, N.M.; Lee, K.-C. (2017) Adsorptive removal of hexavalent chromium using sawdust: enhancement of biosorption and bioreduction. Separation Science and Technology, 52 (10): 1707–1716. doi:10.1080/01496395.2017.1296868
  • Gargiulo, V.; Alfè, M.; Lisi, L.; Manfredi, C.; Volino, S.; Natale, F.D. (2017) Colloidal carbon-based nanoparticles as heavy metal adsorbent in aqueous solution: cadmium removal as a case study. Water, Air, & Soil Pollution, 228 (5): 192. doi:10.1007/s11270-017-3378-5
  • Imamoglu, M.; Şahin, H.; Aydın, Ş.; Tosunoğlu, F.; Yilmaz, H.; Yildiz, S.Z. (2015) Investigation of Pb(II) adsorption on a novel activated carbon prepared from hazelnut husk by K2CO3 activation. Desalination and Water Treatment, 57: 1–10. doi:10.1080/19443994.2014.995135
  • Elkady, A.A.; Carleer, R.; Yperman, J.; D’Haen, J.; Ghafar, H.H.A. (2016) Kinetic and adsorption study of Pb(II) toward different treated activated carbons derived from olive cake wastes. Desalination and Water Treatment, 57: 8561–8574. doi:10.1080/19443994.2015.1020514
  • Ansari, M.; Raisi, A.; Aroujalian, A.; Dabir, B.; Irani, M. (2015) Synthesis of nano-NaX zeolite by microwave heating method for removal of lead, copper, and cobalt ions from aqueous solution. Journal Environment Chemical Engineering, 141: 04014088 (1-8).
  • Sayın, M.; Can, M.; Imamoglu, M.; Arslan, M. (2017) Highly efficient adsorption of Rh(III) from chloride containing solutions by triazine polyamine polymer. Water, Air, & Soil Pollution, 228 (3): 100. doi:10.1007/s11270-017-3284-x
  • Bode-Aluko, C.A.; Pereao, O.; Ndayambaje, G.; Petrik, L. (2017) Adsorption of toxic metals on modified polyacrylonitrile nanofibres: A review. Water, Air, & Soil Pollution, 228 (1): 35. doi:10.1007/s11270-016-3222-3
  • Bhatt, R.R.; Shah, B.A. (2015) Sorption studies of heavy metal ions by salicylic acid-formaldehyde-catechol terpolymeric resin: Isotherm, kinetic and thermodynamics. Arabian Journal of Chemistry, 8: 414–426. doi:10.1016/j.arabjc.2013.03.012
  • Allen, S.J.; Gan, Q.; Matthews, R.; Johnson, P.A. (2005) Mass transfer processes in the adsorption of basic dyes by peanut hulls. Industrial Engineering Chemical Researcher, 44: 1942–1949. doi:10.1021/ie0489507
  • Marcano, D.C.; Kosynkin, D.V.; Berlin, J.M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L.B.; Lu, W.; Tour, J.M. (2010) Improved synthesis of graphene oxide. ACS Nano, 4: 4806–4814. doi:10.1021/nn1006368
  • Jia, W.; Lu, S. (2014) Few-layered graphene oxides as superior adsorbents for the removal of Pb(II) ions from aqueous solutions. Korean Journal Chemical Engineering, 31: 1265–1270. doi:10.1007/s11814-014-0045-z
  • Madadrang, C.J.; Kim, H.Y.; Gao, G.; Wang, N.; Zhu, J.; Feng, H.; Gorring, M.; Kasner, M.L.; Hou, S. (2012) Adsorption behavior of EDTA-graphene oxide for Pb(II) removal. ACS Applied Materials and Interfaces, 4: 1186–1193. doi:10.1021/am201645g
  • Zhang, F.; Wang, B.; He, S.; Man, R. (2014) Preparation of graphene- oxide/polyamidoamine dendrimers and their adsorption properties toward some heavy metal ions. Journal Chemical Engineering Data, 59: 1719–1726. doi:10.1021/je500219e
  • Luo, S.; Xu, X.; Zhou, G.; Liu, C.; Tang, Y.; Liu, Y. (2014) Amino siloxane oligomer-linked graphene oxide as an efficient adsorbent for removal of Pb(II) from wastewater. Journal of Hazardous Materials, 274: 145–155. doi:10.1016/j.jhazmat.2014.03.062
  • Zhang, C.-Z.; Li, T.; Yuan, Y.; Xu, J.Q. (2016) An efficient and environment-friendly method of removing graphene oxide in wastewater and its degradation mechanisms. Chemosphere, 153: 531–540. doi:10.1016/j.chemosphere.2016.03.094
  • Zhang, C.-Z.; (2007) Syntheses and properties of the second-order nonlinear optical materials containing parallel D-π-A units. Ph.D. Thesis. Nanjing University, Nanjing, China.
  • Su, J.; Cao, M.; Ren, L.; Hu, C. (2011) Fe3O4-graphene nanocomposites with improved lithium storage and magnetism properties. Journal Physical Chemical C, 115: 14469–14477. doi:10.1021/jp201666s
  • Ren, P.G.; Yan, D.X.; Ji, X.; Chen, T.; Li, Z.M. (2011) Temperature dependence of graphene oxide reduced by hydrazine hydrate. Nanotechnology, 22: 55705–55712. doi:10.1088/0957-4484/22/5/055705
  • Compton, O.C.; Dikin, D.A.; Putz, K.W.; Brinson, L.C.; Nguyen, S.B.T. (2010) Electrically conductive “alkylated” graphene paper via chemical reduction of amine-functionalized graphene oxide paper. Advancement Materials, 22: 892–896. doi:10.1002/adma.200902069
  • Wang, N.; Zheng, P.; Ma, X. (2016) The modification of carbon materials with carbon disulfide for the removal of Pb2+. Powder Technology, 301: 1–9. doi:10.1016/j.powtec.2016.05.051
  • Che, J.; Shen, L.; Xiao, Y. (2010) A new approach to fabricate graphene nanosheets in organic medium: Combination of reduction and dispersion. Journal Materials Chemical, 20: 1722–1727. doi:10.1039/b922667b
  • Langmuir, I.;. (1916) The constitution and fundamental properties of solids and liquids. Journal of the American Chemical Society, 38: 2221–2295. doi:10.1021/ja02268a002
  • Freundlich, H.M.F.;. (1906) Over the adsorption in solution. Z Physical Chemical, 57: 385–470.
  • Fierro, V.; Torné-Fernández, V.; Montané, D.; Celzard, A. (2008) Adsorption of phenol onto activated carbons having different textural and surface properties. Microporous and Mesoporous Materials, 111 (1): 276–284. doi:10.1016/j.micromeso.2007.08.002
  • Praveen, R.S.; Vijayaraghavan, K. (2015) Optimization of Cu(II), Ni(II), Cd(II) and Pb(II) biosorption by red marine alga kappaphycus alvarezii. Desalin Water Treatment, 55: 1816–1824. doi:10.1080/19443994.2014.927334
  • Sun, X.; Yang, L.; Li, Q.; Zhao, J.; Li, X.; Wang, X.; Liu, H. (2014) Amino-functionalized magnetic cellulose nanocomposite as adsorbent for removal of Cr(VI): synthesis and adsorption studies. Chemical Engineering Journal, 241: 175–183. doi:10.1016/j.cej.2013.12.051
  • Zhou, G.; Luo, J.; Liu, C.; Chu, L.; Ma, J.; Tang, Y.; Zeng, Z.; Luo, S. (2016) A highly efficient polyampholyte hydrogel sorbent based fixed-bed process for heavy metal removal in actual industrial effluent. Water Research, 89: 151–160. doi:10.1016/j.watres.2015.11.053
  • Zhao, F.; Repo, E.; SillanpäÄ, M.; Meng, Y.; Yin, D.; Tang, W.Z. (2015) Green synthesis of magnetic EDTA-and/or DTPA-cross-linked chitosan adsorbents for highly efficient removal of metals. Industrial Engineering Chemical Researcher, 54: 1271–1281. doi:10.1021/ie503874x
  • Karthik, R.; Meenakshi, S. (2015) Removal of Pb(II) and Cd(II) ions from aqueous solution using polyaniline grafted chitosan. Chemical Engineering Journal, 263: 168–177. doi:10.1016/j.cej.2014.11.015
  • Li, Z.; Kong, Y.; Ge, Y. (2015) Synthesis of porous lignin xanthate resin for Pb2+ removal from aqueous solution. Chemical Engineering Journal, 270: 229–234. doi:10.1016/j.cej.2015.01.123
  • Qian, J.; Zeng, Z.; Xue, W.; Guo, Q. (2016) Lead removal from aqueous solutions by 732 cation-exchange resin. Canada Journal Chemical Engineering, 94: 142–150. doi:10.1002/cjce.22363
  • Xu, L.; Peng, R.; Guan, X.; Tang, W.; Liu, X.; Zhang, H. (2013) Preparation, characterization, and application of a new stationary phase containing different kinds of amine groups. Analysis Bioanalytical Chemical, 405: 8311–8318. doi:10.1007/s00216-013-7243-0
  • Das, M.; Dhak, P.; Gupta, S.; Mishra, D.; Maiti, T.K.; Basak, A.; Pramanik, P. (2010) Highly biocompatible and water-dispersible, amine functionalized magnetite nanoparticles, prepared by a low temperature, air-assisted polyol process: A new platform for bio-separation and diagnostics. Nanotechnology, 21: 125103–125114. doi:10.1088/0957-4484/21/12/125103
  • Cabaniss, S.E.;. (2011) Forward modeling of metal complexation by NOM: II. Prediction of binding site properties. Environmental Science & Technology, 45: 3202–3209. doi:10.1021/es102408w
  • Hokkanen, S.; Repo, E.; Suopajärvi, T.; Liimatainen, H.; Niinimaa, J.; Sillanpää, M. (2014) Adsorption of Ni(II), Cu(II) and Cd(II) from aqueous solutions by amino modified nanostructured microfibrillated cellulose. Cellulose, 21: 1471–1487. doi:10.1007/s10570-014-0240-4

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.