758
Views
45
CrossRef citations to date
0
Altmetric
Adsorption

Competitive adsorption of heavy metal ions (Pb2+, Cu2+, and Ni2+) onto date seed biochar: batch and fixed bed experiments

, ORCID Icon &
Pages 888-901 | Received 30 May 2018, Accepted 10 Sep 2018, Published online: 01 Oct 2018

References

  • Mohan, D.;, et al. (2014) Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent–a critical review. Bioresour Technol, 160: 191–202. doi:10.1016/j.biortech.2014.01.120
  • Park, J.-H.;, et al. (2015) Competitive adsorption and selectivity sequence of heavy metals by chicken bone-derived biochar: batch and column experiment. Journal of Environmental Science and Health, Part A, 50 (11): 1194–1204. doi:10.1080/10934529.2015.1047680
  • Jung, K.-W.;, et al. (2017) Adsorption of phosphate from aqueous solution using electrochemically modified biochar calcium-alginate beads: batch and fixed-bed column performance. Bioresource Technology, 244: 23–32. doi:10.1016/j.biortech.2017.07.133
  • Liu, P.;, et al. (2012) Modification of bio-char derived from fast pyrolysis of biomass and its application in removal of tetracycline from aqueous solution. Bioresource Technology, 121: 235–240. doi:10.1016/j.biortech.2012.06.085
  • Tong, X.-J.;, et al. (2011) Adsorption of Cu(II) by biochars generated from three crop straws. Chemical Engineering Journal, 172 (2): 828–834. doi:10.1016/j.cej.2011.06.069
  • Ho, Y.S.; McKay, G. (1999) Competitive sorption of copper and nickel ions from aqueous solution using peat. Adsorption, 5(4): 409–417. doi:10.1023/A:1008921002014.
  • Saeed, A.; Iqbal, M.; Akhtar, M.W. (2005) Removal and recovery of lead(II) from single and multimetal (Cd, Cu, Ni, Zn) solutions by crop milling waste (black gram husk). Journal of Hazardous Materials, 117(1): 65–73. doi:10.1016/j.jhazmat.2004.09.008.
  • Srivastava, V.C.; Mall, I.D.; Mishra, I.M. (2009) Competitive adsorption of cadmium(II) and nickel(II) metal ions from aqueous solution onto rice husk ash. Chemical Engineering and Processing: Process Intensification, 48(1): 370–379. doi:10.1016/j.cep.2008.05.001.
  • Fiol, N.;, et al. (2006) Sorption of Pb(II), Ni(II), Cu(II) and Cd(II) from aqueous solution by olive stone waste. Separation and Purification Technology, 50 (1): 132–140. doi:10.1016/j.seppur.2005.11.016
  • Kavand, M.; Kaghazchi, T.; Soleimani, M. (2014) Optimization of parameters for competitive adsorption of heavy metal ions (Pb+2, Ni+2, Cd+2) onto activated carbon. Korean Journal of Chemical Engineering, 31(4): 692–700. doi:10.1007/s11814-013-0280-8.
  • Park, J.H.;, et al. (2016) Competitive adsorption of heavy metals onto sesame straw biochar in aqueous solutions. Chemosphere, 142: 77–83. doi:10.1016/j.chemosphere.2015.05.093
  • Chen, X.;, et al. (2011) Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution. Bioresour Technol, 102 (19): 8877–8884. doi:10.1016/j.biortech.2011.06.078
  • Yang Ding, Y.L.; Liu, S.; Li, Z.; Tan, X.; Huang, X.; Zeng, G.; Zhou, Y. Bohong Zheng and Xiaoxi Cai, (2016). Competitive removal of Cd(II) and Pb(II) by biochars produced from water hyacinths: performance and mechanism. RSC Advances, 6:5223–5232. doi:10.1039/C5RA26248H.
  • Cao, X.;, et al. (2009) Dairy-manure derived biochar effectively sorbs lead and atrazine. Environmental Science & Technology, 43 (9): 3285–3291. doi:10.1021/es803092k
  • Ronda, A.;, et al. (2013) Effect of lead in biosorption of copper by almond shell. Journal of the Taiwan Institute of Chemical Engineers, 44 (3): 466–473. doi:10.1016/j.jtice.2012.12.019
  • Xu, X.; Cao, X.; Zhao, L. (2013) Comparison of rice husk- and dairy manure-derived biochars for simultaneously removing heavy metals from aqueous solutions: role of mineral components in biochars. Chemosphere, 92(8): 955–961. doi:10.1016/j.chemosphere.2013.03.009.
  • Xiao, Y.;, et al. (2017) Sorption of heavy metal ions onto crayfish shell biochar: effect of pyrolysis temperature, pH and ionic strength. Journal of the Taiwan Institute of Chemical Engineers, 80: 114–121.
  • Villaescusa, I.;, et al. (2004) Removal of copper and nickel ions from aqueous solutions by grape stalks wastes. Water Research, 38 (4): 992–1002. doi:10.1016/j.watres.2003.10.040
  • Deng, J.;, et al. (2017) Competitive adsorption of Pb(II), Cd(II) and Cu(II) onto chitosan-pyromellitic dianhydride modified biochar. Journal of Colloid and Interface Science, 506: 355–364. doi:10.1016/j.jcis.2017.07.069
  • Aksu, Z.;, et al. (2002) Equilibrium modelling of individual and simultaneous biosorption of chromium(VI) and nickel(II) onto dried activated sludge. Water Research, 36 (12): 3063–3073.
  • Mahdi, Z.; El Hanandeh, A.; Yu, Q. (2017). Date seed derived biochar for Ni(II) removal from aqueous solutions. MATEC Web Conf., 120:05005. doi:10.1051/matecconf/201712005005.
  • Mahdi, Z.; El Hanandeh, A.; Yu, Q. (2017) Influence of pyrolysis conditions on surface characteristics and methylene blue adsorption of biochar derived from date seed biomass. Waste and Biomass Valorization, 8(6): 2061–2073. doi:10.1007/s12649-016-9714-y.
  • Mahdi, Z.; Yu, Q.J.; El Hanandeh, A. (2018) Investigation of the kinetics and mechanisms of nickel and copper ions adsorption from aqueous solutions by date seed derived biochar. Journal of Environmental Chemical Engineering, 6(1): 1171–1181. doi:10.1016/j.jece.2018.01.021.
  • Mahdi, Z.; El Hanandeh, A.; Yu, Q. (2015). Date Palm (Phoenix Dactylifera L.) seed characterization for biochar preparation. In 6th International Conference on Engineering, Project, and Production Management, Gold Coast, Australia
  • Chen, J.P.; Wang, X. (2000) Removing copper, zinc, and lead ion by granular activated carbon in pretreated fixed-bed columns. Separation and Purification Technology, 19(3): 157–167. doi:10.1016/S1383-5866(99)00069-6.
  • Al Hawari, A.;. (2004) Biosorption of Lead, Copper, Cadmium and Nickel by Anaerobic Biomass in Building, Civil and Environmental Engineering, Doctoral dissertation, Concordia University.
  • Wang, X.S.; Li, Z.Z. (2009) Competitive adsorption of nickel and copper ions from aqueous solution using nonliving biomass of the marine brown AlgaLaminaria japonica. CLEAN - Soil, Air, Water, 37(8): 663–668. doi:10.1002/clen.v37:8.
  • Febrianto, J.;, et al. (2009) Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: a summary of recent studies. Journal of Hazardous Materials, 162 (2): 616–645. doi:10.1016/j.jhazmat.2008.06.042
  • Sohn, S.; Kim, D. (2005) Modification of Langmuir isotherm in solution systems—definition and utilization of concentration dependent factor. Chemosphere, 58(1): 115–123. doi:10.1016/j.chemosphere.2004.08.091.
  • Mohan, D.; Pittman Jr, C.U.; Steele, P.H. (2006) Single, binary and multi-component adsorption of copper and cadmium from aqueous solutions on Kraft lignin—a biosorbent. Journal of Colloid and Interface Science, 297(2): 489–504. doi:10.1016/j.jcis.2005.11.023.
  • McKay, G.; Porter, J.F. (1997) Equilibrium parameters for the sorption of copper, cadmium and zinc ions onto peat. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental AND Clean Technology, 69(3): 309–320. doi:10.1002/(SICI)1097-4660(199707)69:3<309::AID-JCTB724>3.0.CO;2-W.
  • Bouhamed, F.;, et al. (2013) Application of activated carbon based on a Tunisian date stons for the Ni (II) and Zn (II) adsoption in single and binary systems. Fresenius Environ Bull, 22: 3490–3500.
  • Al-Asheh, S.; Duvnjak, Z. (1998) Binary metal sorption by pine bark: study of equilibria and mechanisms. Separation Science and Technology, 33(9): 1303–1329. doi:10.1080/01496399808544985.
  • Srivastava, P.; Singh, B.; Angove, M. (2005) Competitive adsorption behavior of heavy metals on kaolinite. Journal of Colloid and Interface Science, 290(1): 28–38. doi:10.1016/j.jcis.2005.04.036.
  • Agbenin, J.O.; Olojo, L.A. (2004) Competitive adsorption of copper and zinc by a Bt horizon of a savanna Alfisol as affected by pH and selective removal of hydrous oxides and organic matter. Geoderma, 119(1): 85–95. doi:10.1016/S0016-7061(03)00242-8.
  • Kadirvelu, K.; Goel, J.; Rajagopal, C. (2008) Sorption of lead, mercury and cadmium ions in multi-component system using carbon aerogel as adsorbent. Journal of Hazardous Materials, 153(1): 502–507. doi:10.1016/j.jhazmat.2007.08.082.
  • Kavand, M.;, et al. (2016) Competitive separation of lead, cadmium, and nickel from aqueous solutions using activated carbon: response surface modeling, equilibrium, and thermodynamic studies. Chemical Engineering Communications, 203 (1): 123–135. doi:10.1080/00986445.2014.962691
  • Schiewer, S.; Balaria, A. (2009) Biosorption of Pb2+ by original and protonated citrus peels: equilibrium, kinetics, and mechanism. Chemical Engineering Journal, 146(2): 211–219. doi:10.1016/j.cej.2008.05.034.
  • Han, R.;, et al. (2006) Copper(II) and lead(II) removal from aqueous solution in fixed-bed columns by manganese oxide coated zeolite. Journal of Hazardous Materials, 137 (2): 934–942. doi:10.1016/j.jhazmat.2006.03.016
  • Kaewsarn, P.;. (2000) Single and Multi-Component Biosorption of Heavy Metal Ions by Biosorbents from Marine Alga Durvillaea Potatarum, in School of Environmental Engineering, Griffith university: Australia.
  • Worch, E.;. (2012) Adsorption Technology in Water Treatment: Fundamentals, Processes, and Modelling, Berlin/Boston,GERMANY: De Gruyter, Inc.
  • Huang, X.; Liao, X.; Shi, B. (2009) Adsorption removal of phosphate in industrial wastewater by using metal-loaded skin split waste. Journal of Hazardous Materials, 166(2): 1261–1265. doi:10.1016/j.jhazmat.2008.12.045.
  • Sulaymon, A.H.; Ahmed, K.W. (2008) Competitive adsorption of furfural and phenolic compounds onto activated carbon in fixed bed column. Environmental Science & Technology, 42(2): 392–397. doi:10.1021/es070516j.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.