410
Views
76
CrossRef citations to date
0
Altmetric
Adsorption

Adsorptive removal of congo red dye (CR) from aqueous solution by Cornulaca monacantha stem and biomass-based activated carbon: isotherm, kinetics and thermodynamics

, , , &
Pages 916-929 | Received 04 Nov 2017, Accepted 13 Sep 2018, Published online: 08 Oct 2018

References

  • Fatta-Kassinos, D.; Meric, S.; Nikolaou, A. (2011) Pharmaceutical residues in environmental waters and wastewater: current state of knowledge and future research. Analytical and Bioanalytical Chemistry, 399: 251–275. doi:10.1007/s00216-010-4300-9
  • Roland, W.; Alan, W.; Martin, F. (2011) Persistent organic pollutants and landfills-a review of past experiences and future challenges. Waste Management & Research, 29 (1): 107–121. doi:10.1177/0734242X10390730
  • Jia, Z.Q.; Sun, H.J.; Du, Z.X.; Lei, Z.G. (2014) Catalytic bubble-free hydrogenation reduction of azo dye by porous membranes loaded with palladium nanoparticles. Journal of Environmental Sciences, 26: 478–482. doi:10.1016/S1001-0742(13)60416-7
  • Pan, Y.; La, Z.; Zhang, Z.X.; Tong, S.; Li, H.; Jia, C.Z.; Liu, B.; Sun, C.Y.; Yang, L.Y.; Chen, G.J.; Ma, D.Y. (2016) Adsorptive removal of phenol from aqueous solution with zeolitic imidazolate framework-67. Journal of Environmental Management, 169: 167–173. doi:10.1016/j.jenvman.2015.12.030
  • Chen, C.J.;. (2014) Health hazards and mitigation of chronic poisoning from arsenic in drinking water: taiwan experiences. Reviews on Environmental Health, 29: 13–19. doi:10.1515/reveh-2014-0007
  • Abu-Eishah, S.I.;. (2008) Removal of Zn, Cd, and Pb Ions from water by Sarooj clay. Applied Clay Science, 42: 201–205. doi:10.1016/j.clay.2008.02.003
  • Gupta, V.K.; Pathania, D.; Sharma, S.; Agarwal, S.; Singh, P. (2013) Remediation of noxious chromium (VI) utilizing acrylic acid grafted lignocellulosic adsorbent. Journal of Molecular Liquids, 177: 343–352. doi:10.1016/j.molliq.2012.10.017
  • Arulkumar, M.; Thirumalai, K.; Sathishkumar, P.; Palvannan, T. (2012) Rapid removal of chromium from aqueous solution using novel prawn shell activated carbon. Chemical Engineering Journal, 185: 178–186. doi:10.1016/j.cej.2012.01.071
  • Auta, M.; Hameed, B.H. (2011) Preparation of waste tea activated carbon using potassium acetate as an activating agent for adsorption of Acid Blue 25 dye. Chemical Engineering Journal, 171: 502–509. doi:10.1016/j.cej.2011.04.017
  • Gupta, V.K.; Pathania, D.; Singh, P. (2014) Pectin–cerium (IV) tungstate nanocomposite and its adsorptional activity for removal of methylene blue dye. International Journal of Environmental Science and Technology, 11: 2015–2024. doi:10.1007/s13762-013-0351-8
  • Wang, J.C.; Ren, J.; Yao, H.C.; Zhang, L.; Wang, J.S.; Zang, S.Q.; Han, L.F.; Li, Z.J. (2016) Synergistic photocatalysis of Cr(VI) reduction and 4-Chlorophenol degradation over hydroxylated α-Fe2O3 under visible light irradiation. Journal of Hazardous Materials, 311: 11–19. doi:10.1016/j.jhazmat.2016.02.055
  • Gupta, V.K.; Pathania, D.; Sharma, S.; Agarwal, S.; Singh, P. (2013) Remediation and recovery of methyl orange from aqueous solution onto acrylic acid grafted Ficus carica fiber: isotherms, kinetics and thermodynamics. Journal of Molecular Liquids, 177: 325–334. doi:10.1016/j.molliq.2012.10.007
  • Moussavi, G.; Mahmoudi, M. (2009) Removal of azo and anthraquinone reactive dyes from industrial wastewaters using MgO nanoparticles. Journal of Hazardous Materials, 168: 806–812. doi:10.1016/j.jhazmat.2009.02.097
  • Bharathi, K.S.; Ramesh, S.T. (2013) Removal of dyes using agricultural waste as low-cost adsorbents: a review. Applied Water Science, 3: 773–790. doi:10.1007/s13201-013-0117-y
  • Chowdhury, S.; Mishra, R.; Saha, P.; Kushwaha, P. (2011) Adsorption thermodynamics, kinetics and isosteric heat of adsorption of malachite green onto chemically modified rice husk. Desalination, 265: 159–168. doi:10.1016/j.desal.2010.07.047
  • Han, R.; Ding, D.; Xu, Y.; Zou, W.; Wang, Y.; Li, Y.; Zou, L. (2008) Use of rice husk for the adsorption of congo red from aqueous solution in column mode. Bioresource Technology, 99: 2938–2946. doi:10.1016/j.biortech.2007.06.027
  • Kagalkar, A.N.; Jagtap, U.B.; Jadhav, J.P.; Bapat, V.A.; Govindwar, S.P. (2009) Biotechnological strategies for phytoremediation of the sulfonated azo dye Direct Red 5B using Blumea malcolmii Hook. Bioresource Technology, 100: 4104–4110. doi:10.1016/j.biortech.2009.03.049
  • Khansorthong, S.; Hunsom, M. (2009) Remediation of wastewater from pulp and paper mill industry by the electrochemical technique. Chemical Engineering Journal, 151: 228–234. doi:10.1016/j.cej.2009.02.038
  • Kobya, M.; Bayramoglu, M.; Eyvaz, M. (2007) Techno-economical evaluation of electrocoagulation for the textile wastewater using different electrode connections. Journal of Hazardous Materials, 148: 311–318. doi:10.1016/j.jhazmat.2007.02.036
  • Daneshvar, N.; Oladegaragoze, A.; Jafarzadeh, N.D. (2006) Decolorization of basic dye solutions by electrocoagulation: an investigation of the effect of operational parameters. Journal of Hazardous Materials, 129: 116–122. doi:10.1016/j.jhazmat.2005.08.033
  • Song, S.; He, Z.; Qiu, J.; Chen, X.L. (2007) Ozone assisted electrocoagulation for decolorization of CI Reactive Black 5 in aqueous solution: an investigation of the effect of operational parameters. Separation and Purification Technology, 55: 238–245. doi:10.1016/j.seppur.2006.12.013
  • Can, O.T.; Kobya, M.; Demirbas, E.; Bayramoglu, M. (2006) Treatment of the textile wastewater by combined electrocoagulation. Chemosphere, 62: 181–187. doi:10.1016/j.chemosphere.2005.05.022
  • Javadian, H.; Angaji, M.T.; Naushad, M. (2014) Synthesis and characterization of polyaniline/γ-alumina nanocomposite: a comparative study for the adsorption of three different anionic dyes. Journal of Industrial and Engineering Chemistry, 20: 3890–3900. doi:10.1016/j.jiec.2013.12.095
  • Pathania, D.; Sharma, A.; Siddiqi, Z.M. (2016) Removal of congo red dye from aqueous system using Phoenix dactylifera seeds. Journal of Molecular Liquids, 219: 359–367. doi:10.1016/j.molliq.2016.03.020
  • Gupta, V.K.; Pathania, D.; Agarwal, S.; Sharma, S. (2014) Amputation of congo red dye from waste water using microwave induced grafted Luffa cylindrica cellulosic fiber. Carbohydrate Polymers, 111: 556–566. doi:10.1016/j.carbpol.2014.04.032
  • Sharma, G.; Naushad, M.; Ala’a, H.; Kumar, A.; Khan, M.R.; Kalia, S.; Bala, M.; Sharma, A. (2017) Fabrication and characterization of chitosan-crosslinked-poly (alginic acid) nanohydrogel for adsorptive removal of Cr(VI) metal ion from aqueous medium. International Journal of Biological Macromolecules, 95: 484–493. doi:10.1016/j.ijbiomac.2016.11.072
  • Sharma, A.; Sharma, G.; Naushad, M.; Ghfar, A.A.; Pathania, D. (2017) Remediation of anionic dye from aqueous system using bio-adsorbent prepared by microwave activation. Environmental Technology, 1–14. doi:10.1080/09593330.2017.1317293
  • Hejazifar, M.; Azizian, S. (2012) Adsorption of cationic and anionic dyes onto the activated carbon prepared from grapevine rhytidome. Journal of Dispersion Science and Technology, 33: 846–853. doi:10.1080/01932691.2011.579861
  • Huang, Y.; Ma, E.; Zhao, G. (2015) Thermal and structure analysis on reaction mechanisms during the preparation of activated carbon fibers by KOH activation from liquefied wood-based fibers. Industrial Crops and Products, 69: 447–455. doi:10.1016/j.indcrop.2015.03.002
  • Kumar, A.; Jena, H.M. (2015) High surface area microporous activated carbons prepared from Fox nut (Euryale ferox) shell by zinc chloride activation. Applied Surface Science, 356: 753–761. doi:10.1016/j.apsusc.2015.08.074
  • Sharma, A.; Thakur, K.K.; Mehta, P.; Pathania, D. (2018) Efficient adsorption of chlorpheniramine and hexavalent chromium (Cr(VI)) from water system using agronomic waste material. Sustainable Chemistry and Pharmacy, 9: 1–11. doi:10.1016/j.scp.2018.04.002
  • Chen, L.; Chen, N.; Wu, H.; Li, W.; Fang, Z.; Xu, Z.; Qian, X. (2018) Flexible design of carbon nanotubes grown on carbon nanofibers by PECVD for enhanced Cr (VI) adsorption capacity. Separation and Purification Technology, doi:10.1016/j.seppur.2018.06.065
  • Zhang, Y.; Lin, S.; Qiao, J.; Kołodyńska, D., Ju, Y.; Zhang, M.; Cai, M.; Deng, D.; Dionysiou, D.D. (2018) Malic acid-enhanced chitosan hydrogel beads (mCHBs) for the removal of Cr(VI) and Cu (II) from aqueous solution. Chemical Engineering Journal, doi:10.1016/j.cej.2018.06.143
  • Li, Y.; Bi, H.Y.; Mao, X.M.; Liang, Y.Q.; Li, H. (2018) Adsorption behavior and mechanism of core–shell magnetic rhamnolipid–layered double hydroxide nanohybrid for phenolic compounds from heavy metal–phenolic pollutants. Applied Clay Science, 162: 230–238. doi:10.1016/j.clay.2018.06.013
  • Alqadami, A.A.; Naushad, M.; Alothman, Z.A.; Ahamad, T. (2018) Adsorptive performance of MOF nanocomposite for methylene blue and malachite green dyes: kinetics, isotherm and mechanism. Journal of Environmental Management, 223: 29–36. doi:10.1016/j.jenvman.2018.05.090
  • Singh, P.K.; Banerjee, S.; Srivastava, A.L.; Sharma, Y.C. (2015) Kinetic and equilibrium modeling for removal of nitrate from aqueous solutions and drinking water by a potential adsorbent, hydrous bismuth oxide. RSC Advances, 5: 35365–35376. doi:10.1016/j.apsusc.2015.08.074
  • Langmuir, I.;. (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, 40: 1361–1403. doi:10.1021/ja02242a004
  • Pathania, D.; Sharma, S. (2012) Effect of surfactants and electrolyte on removal and recovery of basic dye by using Ficus carica cellulosic fibers as biosorbent. Tenside Surfactants Detergents, 49: 306–314. doi:10.3139/113.110196
  • Freundlich, H.M.F.;. (1906) Over the adsorption in solution. Journal of Physical Chemistry, 57: 1100–1107. doi:10.1515/zpch-1907-5723
  • Ghaedi, M.; Mortazavi, K.; Montazerozohori, M.; Shokrollahi, A.; Soylak, M. (2013) Flame atomic absorption spectrometric (FAAS) determination of copper, iron and zinc in food samples after solid-phase extraction on Schiff base-modified duolite XAD 761. Materials Science and Engineering: C, 33: 2338–2344. doi:10.1016/j.msec.2013.01.062
  • Ho, Y.S.; Mckay, G. (1998) Sorption of dye from aqueous solution by peat. Chemical Engineering Journal, 70: 115–124. doi:10.1016/S0923-0467(98)00076-1
  • Basar, C.A.;. (2006) Applicability of the various adsorption models of three dyes adsorption onto activated carbon prepared waste apricot. Journal of Hazardous Materials, 135: 232–241. doi:10.1016/j.jhazmat.2005.11.055
  • Hameed, B.H.;. (2009) Spent tea leaves: a new non-conventional and low-cost adsorbent for removal of basic dye from aqueous solutions. Journal of Hazardous Materials, 161: 753–759. doi:10.1016/j.jhazmat.2008.04.019
  • Barakat, M.A.;. (2011) New trends in removing heavy metals from industrial wastewater. Arabian Journal of Chemistry, 4: 361–377. doi:10.1016/j.arabjc.2010.07.019
  • Sharma, A.; Sharma, G.; Kumar, A.; Siddiqi, Z.M.; Pathania, D. (2016) Exclusion of Organic Dye Using Neoteric Activated Carbon Prepared from Cornulaca monacantha Stem: equilibrium and Thermodynamics Studies. In Materials Science Forum, 875: 1–15. doi:10.4028/www.scientific.net/MSF.875.1
  • Angin, D.;. (2014) Production and characterization of activated carbon from sour cherry stones by zinc chloride. Fuel, 115: 804–811. doi:10.1016/j.fuel.2013.04.060
  • Dawood, S.; Sen, T.K.; Phan, C. (2014) Synthesis and characterisation of novel-activated carbon from waste biomass pine cone and its application in the removal of congo red dye from aqueous solution by adsorption. Water, Air, & Soil Pollution, 225: 1818. doi:10.1007/s11270-013-1818-4
  • Nekouei, F.; Nekouei, S.; Tyagi, I.; Gupta, V.K. (2015) Kinetic, thermodynamic and isotherm studies for acid blue 129 removal from liquids using copper oxide nanoparticle-modified activated carbon as a novel adsorbent. Journal of Molecular Liquids, 201: 124–133. doi:10.1016/j.molliq.2014.09.027
  • Li, Y.; Bi, H.Y.; Jin, Y.S. (2017) Facile preparation of rhamnolipid-layered double hydroxide nanocomposite for simultaneous adsorption of p-cresol and copper ions from water. Chemical Engineering Journal, 308: 78–88. doi:10.1016/j.cej.2016.09.030
  • Taghizadeh, F.; Ghaedi, M.; Kamali, K.; Eharifpour, S.; Sahraie, R.; Purkait, R.K. (2013) Comparison of nickel and/or zinc selenide nanoparticle loaded on activated carbon as efficient adsorbents for kinetic and equilibrium study of removal of Arsenazo (ΙΙΙ) dye. Powder Technology, 245: 217–226. doi:10.1016/j.powtec.2013.04.020
  • Smith, Y.R.; Bhattacharyya, D.; Willhard, T.; Misra, M. (2016) Adsorption of aqueous rare earth elements using carbon black derived from recycled tires. Chemical Engineering Journal, 296: 102–111. doi:10.1016/j.cej.2016.03.082
  • Sayğılı, H.; Güzel, F. (2016) High surface area mesoporous activated carbon from tomato processing solid waste by zinc chloride activation: process optimization, characterization and dyes adsorption. Journal of Cleaner Production, 113: 995–1004. doi:10.1016/j.jclepro.2015.12.055
  • Jiang, L.; Liu, Y.; Liu., S.; Hu, X.; Zeng, G.; Hu, X.; Liu, S.; Liu, S.; Huang, B.; Li, M. (2017) Fabrication of β-cyclodextrin/poly (L-glutamic acid) supported magnetic graphene oxide and its adsorption behavior for 17β-estradiol. Chemical Engineering Journal, 308: 597–605. doi:10.1016/j.cej.2016.09.067
  • Dotto, G.L.; Santos, J.M.N.; Tanabe, E.H.; Bertuol, D.A.; Foletto, E.L.; Lima, E.C.; Pavan, F.A. (2017) Chitosan/polyamide nanofibers prepared by Forcespinning® technology: A new adsorbent to remove anionic dyes from aqueous solutions. Journal of Cleaner Production, 144: 120–129. doi:10.1016/j.jclepro.2017.01.004
  • Sharma, A.; Siddiqi, Z.M.; Pathania, D. (2017) Adsorption of polyaromatic pollutants from water system using carbon/ZnFe2O4 nanocomposite: equilibrium, kinetic and thermodynamic mechanism. Journal of Molecular Liquids, 240: 361–371. doi:10.1016/j.molliq.2017.05.083
  • Wang, L.; Wang, A.Q. (2007) Adsorption characteristics of Congo Red onto the chitosan/montmorillonite nanocomposite. Journal of Hazardous Materials, 147: 979–985. doi:10.1016/j.jhazmat.2007.01.145
  • Namasivayam, C.; Muniasamy, N.; Gayathri, K.; Rani, M.; Ranganathan, K. (1996) Removal of dyes from aqueous solutions by cellulosic waste orange peel. Bioresource Technology, 57: 37–43. doi:10.1016/0960-8524(96)00044-2
  • Namasivayam, C.; Arasi, D.J.S.E. (1997) Removal of congo red from wastewater by adsorption onto waste red mud. Chemosphere, 34: 401–417. doi:10.1016/S0045-6535(96)00385-2
  • Nunes, A.A.; Franca, A.S.; Oliveira, L.S. (2009) Activated carbons from waste biomass: an alternative use for biodiesel production solid residues. Bioresource Technology, 100: 1786–1792. doi:10.1016/j.biortech.2008.09.032
  • Zhua, H.Y.; Fu, Y.Q.; Jiang, R.; Jiang, J.H.; Xiao, L.; Zeng, G.M.; Zhao, S.L.; Wang, Y. (2011) Adsorption removal of congo red onto magnetic cellulose/Fe 3 O 4/activated carbon composite: equilibrium, kinetic and thermodynamic studies. Chemical Engineering Journal, 173: 494–502. doi:10.1016/j.cej.2011.08.020
  • Aygun, A.; Yenisoy-Karakas, S.; Duman, I. (2003) Production of granular activated carbon from fruit stones and nutshells and evaluation of their physical, chemical and adsorption properties. Microporous and Mesoporous Materials, 66: 189–195. doi:10.1016/j.micromeso.2003.08.028
  • Ahmad, R.; Kumar, R. (2010) Adsorptive removal of congo red dye from aqueous solution using bael shell carbon. Applied Surface Science, 257: 1628–1633. doi:10.1016/j.apsusc.2010.08.111
  • Dawood, S.; Sen, T.K. (2012) Removal of anionic dye Congo red from aqueous solution by raw pine and acid-treated pine cone powder as adsorbent: equilibrium, thermodynamic, kinetics, mechanism and process design. Water Research, 46: 1933–1946. doi:10.1016/j.watres.2012.01.009
  • Fu, Y.; Viraraghavan, T. (2002) Removal of Congo Red from an aqueous solution by fungus Aspergillus niger. Advances in Environmental Research, 7 (1): 239–247. doi:10.1016/S1093-0191(01)00123-X
  • Mall, I.D.; Srivastava, V.C.; Agarwal, N.K.; Mishra, I.M. (2005) Removal of congo red from aqueous solution by bagasse fly ash and activated carbon: kinetic study and equilibrium isotherm analyses. Chemosphere, 61 (4): 492–501. doi:10.1016/j.chemosphere.2005.03.065
  • Bhattacharyya, K.G.; Sharma, A. (2004) Azadirachta indica leaf powder as an effective biosorbent for dyes: a case study with aqueous Congo red solutions. Journal of Environmental Management, 71 (3): 217–229. doi:10.1016/j.jenvman.2004.03.002
  • Durairaja, K.; Senthilkumara, P.; Priya, V.; Velmuruganb, P.; Kumarc, A.J. (2018) Novel synthesis of Chrysanthemum indicum flower as an adsorbent for the removal of direct Congo red from aqueous solution. Desalination and Water Treatment, 113: 270–280. doi:10.5004/dwt.2018.22292

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.