347
Views
41
CrossRef citations to date
0
Altmetric
Adsorption

Removal of divalent nickel from aqueous solution using blue-green marine algae: adsorption modeling and applicability of various isotherm models

&
Pages 943-961 | Received 03 Jan 2018, Accepted 17 Sep 2018, Published online: 02 Nov 2018

References

  • Sočo, E.; Kalembkiewicz, J. (2013) Adsorption of nickel(II) and copper(II) ions from aqueous solution by coal fly ash. Journal of Environmental Chemical Engineering, 1 (3): 581–588. doi:10.1016/j.jece.2013.06.029
  • Shyam, R.; Puri, J.K.; Kaur, H.; Amutha, R.; Kapila, A. (2013) Single and binary adsorption of heavy metals on fly ash samples from aqueous solution. Journal of Molecular Liquids, 178: 31–36. doi:10.1016/j.molliq.2012.10.031
  • Wu, X.-W.; Ma, H.-W.; Zhang, L.-T.; Wang, F.-J. (2012) Adsorption properties and mechanism of mesoporous adsorbents prepared with fly ash for removal of Cu(II) in aqueous solution. Applied Surface Science, 261: 902–907.
  • Xia, L.; Hu, Y.-X.; Zhang, B.-H. (2014) Kinetics and equilibrium adsorption of copper(II) and nickel(II) ions from aqueous solution using sawdust xanthate modified with ethane di amine. Transactions of Nonferrous Metals Society of China, 24 (3): 868–875. doi:10.1016/S1003-6326(14)63137-X
  • Cui, L.; Wu, G.; Jeong, T.-S. (2010) Adsorption performance of nickel and cadmium ions onto brewer’s yeast. The Canadian Journal of Chemical Engineering, 88 (1): 109–115. doi:10.1002/cjce.20241
  • Malkoc, E.; Nuhoglu, Y. (2010) Nickel(II) adsorption mechanism from aqueous solution by a new adsorbent—waste acorn of Quercus ithaburensis. AIChE Environmental Progress & Sustainable Energy, 29: 297–306. doi:10.1002/ep.10412
  • Bulgariu, L.;. (2010) Dumitru Bulgariu and Matei Macoveanu, kinetics and equilibrium study of Nickel(II) removal using peat moss. Environmental Engineering and Management Journal, 9 (5): 667–674. doi:10.30638/eemj.2010.091
  • Shen, Z.; Zhang, Y.; McMillan, O.; Jin, F.; Al-Tabbaa, A. (2017) Characteristics and mechanisms of nickel adsorption on biochars produced from wheat straw pellets and rice husk. Environmental Science and Pollution Research, 24 (14): 12809–12819. doi:10.1007/s11356-017-8847-2
  • Naskar, A.; Guha, A.K.; Mukherjee, M.; Ray, L. (2016) Adsorption of nickel onto Bacillus cereus M116: A mechanistic approach. Separation Science and Technology, 51 (3): 427–438. doi:10.1080/01496395.2015.1115069
  • Bulgariu, D.; Bulgariu, L. (2013) Sorption of Pb(II) onto a mixture of algae waste biomass and anion exchanger resin in a packed-bed column. Bioresource Technology, 129: 374–380. doi:10.1016/j.biortech.2012.10.142
  • Davis., T.A.; Volesky, B.; Mucci, A. (2003) A review of the biochemistry of heavy metal biosorption by brown algae. Water Research, 37: 4311–4330. doi:10.1016/S0043-1354(03)00293-8
  • Volesky., B.;. (1994) Advances in biosorption of metals: Selection of biomass types. FEMS Microbiology Reviews, 14: 291–302.
  • Demiral, H.; Güngör, C. (2016) Adsorption of copper(II) from aqueous solutions on activated carbon prepared from grape bagasse. Journal of Cleaner Production, 124: 103–113. doi:10.1016/j.jclepro.2016.02.084
  • Ozcan, A.S.; Erdem, B.; Ozcan, A. (2005) Adsorption of acid blue 193 from aqueous solutions onto BTMN - bentonite. Colloid Surface A, 266: 73–81. doi:10.1016/j.colsurfa.2005.06.001
  • Temkin, M.I.; Pyzhev, V. (1940) Kinetics of ammonia synthesis on promoted iron catalyst. Acta Physiochimica USSR, 12: 327–356.
  • Ruthven, D.M.;. (1984) Principle of Adsorption and Adsorption Processes, John Willey and Sons: New Jersey, NJ, USA.
  • Langmuir, I.;. (1916) The constitution and fundamental properties of solids and liquids. Journal of the American Chemical Society, 38: 2221–2295. doi:10.1021/ja02268a002
  • Langmuir, I.;. (1918) The adsorption of gases on plane surfaces of glass, mica, and platinum. Journal of the American Chemical Society, 40: 1361–1403. doi:10.1021/ja02242a004
  • Baroni, P.; Veira, R.S.; Meneghetti, E.; Da Silva, M.G.C.; Beppu, M.M. (2008) Evaluation of batch adsorption of chromium ions on natural and crosslinked chitosan membranes. Journal of Hazardous Materials, 152: 1155–1163. doi:10.1016/j.jhazmat.2007.07.099
  • Freundlich, H.M.F.;. (1906) U¨ ber die adsorption in la¨sungen. Z Physical Chemical, 57: 385–470.
  • Treybal, R.E.;. (1981) Mass–Transfer Operations, 3rd Ed.; McGraw–Hill: Tokyo.
  • Dubinin, M.M.; Radushkevich, L.V. (1947) The equation of the characteristic curve of activated charcoal. Dokl .Akad. Nauk Sssr., 55: 327–329.
  • Radushkevich, L.V.;. (1949) Potential theory of sorption and structure of carbons. Zhurnal Fizicheskoi Khimii, 23: 1410–1420.
  • Dubinin, M.M.;. (1960) The potential theory of adsorption of gases and vapors for adsorbents with energetically non-uniform surface. Chemical Reviews, 60: 235–266. doi:10.1021/cr60204a006
  • Dubinin, M.M.;. (1965) Modern state of the theory of volume filling of micropore adsorbents during adsorption of gases and steams on carbon adsorbents. Zhurnal Fizicheskoi Khimii, 39: 1305–1317.
  • Temkin, M.I.;. (1941) Adsorption equilibrium and process kinetics on homogeneous surfaces and with interaction between adsorbed molecules. Zh. Fiz. Khim, 15 (3): 296–332.
  • Hill, T.L.;. (1946) Statistical mechanics of multi molecular adsorption II. Localized and mobile adsorption and absorption. The Journal of Chemical Physics, 14 (7): 441–453. doi:10.1063/1.1724166
  • Hill, T.L.;. (1952) Theory of physical adsorption. Advancement Catal, 4: 211–258.
  • de Boer, J.H.;. (1953) The Dynamical Character of Adsorption, Oxford University Press: Oxford.
  • Kumara, P.S.; Ramalingam, S.; Kiruphac, S.D.; Murugesanc, A.; Vidhyarevicsivanesam, S. (2010) Adsorption behaviour of Nickel (II) onto cashew nut shell: equilibrium, thermodynamics, kinetics, mechanism and process design. Chemical Engineering Journal, 1169: 122–131.
  • Sampranpiboon, P.; Charnkeitkong, P.; Feng, X. (2014) Equilibrium isotherm models for adsorption of zinc (II) ion from aqueous solution on pulp waste. WSEAS Transactions on Environment and Development, 10: 35–47.
  • Hamdaoui, O.; Naffrechoux, E. (2007) Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbon. Part I. Two-parameter models and equations allowing determination of thermodynamic parameters. Journal of Hazardous Materials, 147 (1): 381–394. doi:10.1016/j.jhazmat.2007.01.021
  • Hamdaouia, O.; Naffrechoux, E. (2007) Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbon Part II. Models withore than two parameters. Journal of Hazardous Materials, 147: 401–411. doi:10.1016/j.jhazmat.2007.01.023
  • Amin, M.T.; Alazba, A.A.; Shafiq, M. (2015) Adsorptive removal of reactive black 5 from wastewater using bentonite clay: Isotherms, kinetics and thermodynamics. Sustainability, 7 (11): 15302–15318. doi:10.3390/su71115302
  • Ebelegi, N.A.; Angaye, S.S.; Ayawei, N.; Wankasi., D. (2017) Removal of congo red from aqueous solutions using fly ash modified with hydrochloric acid. British Journal of Applied Science and Technology, 20 (4): 1–7.
  • Fowler, R.H.; Guggenheim., E.A. (1939) Statistical Thermodynamics, Cambridge University Press: London, England.
  • Foo, K.Y.; Hameed, B.H. (2010) Review: Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal, 156: 2–10. doi:10.1016/j.cej.2009.09.013
  • Jovanovic, D.S.;. (1969) Physical sorption of gases. I. Isotherms for monolayer and multilayer sorption. Colloid and Polymer Science, 235: 1203–1214.
  • Elovich, S.Y.; Larinov, O.G. (1962) Theory of adsorption from solutions of non electrolytes on solid (I) equation adsorption from solutions and the analysis of its simplest form, (II) verification of the equation of adsorption isotherm from solutions, Izv. Akad. Nauk. SSSR. Otd. Khim. Nauk., 2: 209–216.
  • Kiselev, A.V.;. (1958) Vapor adsorption in the formation of adsorbate molecule complexes on the surface. Kolloid Zhur, 20: 338–348.
  • Hill, A.V.;. (1910) The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. Journal Physiological, 40: 4–7.
  • Redlich, O.; Peterson, D.L. (1959) A useful adsorption isotherm. Journal Physical Chemical, 63: 1024–1026. doi:10.1021/j150576a611
  • Sips, R.;. (1948) On the structure of a catalyst surface. Journal Chemical Physical, 16: 490–495. doi:10.1063/1.1746922
  • Valenzuela, D.P.; Myers, A.L. (1989) Adsorption Equilibria Data Handbook, Prentice–Hall: Englewood Cliffs, NJ.
  • Fritz, W.; Schlunder, E.U. (1974) Simultaneous adsorption equilibria of organic solutes in dilute aqueous solution on activated carbon. Chemical Engineering Sciences, 29: 1279–1282. doi:10.1016/0009-2509(74)80128-4
  • Radke, C.J.; Prausnitz, J.M. (1972) Sorption of organic solutes from dilute aqueous solutions on activated carbon. Industrial Engineering Chemical Fund, 11: 445–451. doi:10.1021/i160044a003
  • Toth, J.;. (1971) State equations of the solid gas interface layer. Acta Chemical Academic Hung, 69: 311–317.
  • Khan, A.R.; Ataullah, R.; Al–Haddad, A. (1997) Equilibrium adsorption studies of some aromatic pollutants from dilute aqueous solutions on activated carbon at different temperatures. Journal Colloid Interface Sciences, 194: 154–165. doi:10.1006/jcis.1997.5041
  • Koble, R.A.; Corrigan., T.E. (1952) Adsorption isotherms for pure hydrocarbons. Industrial Engineering Chemical, 44: 383–387. doi:10.1021/ie50506a049
  • Jossens, L.; Prausnitz, J.M.; Fritz, W.; Schlünder, E.U.; Myers, A.L. (1978) Thermodynamics of multi–solute adsorption from dilute aqueous solutions. Chemical Engineering Sciences, 33: 1097–1106. doi:10.1016/0009-2509(78)85015-5
  • Quin˜ones, I.; Guiochon, G. (1996) Derivation and application of a Jovanovic– freundlich isotherm model for single–component adsorption on heterogeneous surfaces. Journal of Colloid and Interface Science, 183: 57–67. doi:10.1006/jcis.1996.0518
  • Brouers, F.; Sotolongo, O.; Marquez, F.; Pirard, J.P. (2005) Microporous and heterogeneous surface adsorption isotherms arising from Levy distributions. Physica. A, 349: 271–282. doi:10.1016/j.physa.2004.10.032
  • Ncibi, M.C.; Altenor, S.; Seffen, M.; Brouers, F.; Gaspa., S. (2008) Modelling single compound adsorption onto porous and non-porous sorbents using a deformed Weibull exponential isotherm. Chemical Engineering Journal, 145: 196–202. doi:10.1016/j.cej.2008.04.001
  • Vieth, W.R.; Sladek, K.J. (1965) A model for diffusion in a glassy polymer. Journal Colloid Sciences, 20: 1014–1033. doi:10.1016/0095-8522(65)90071-1
  • Chern, J.M.; Wu, C.Y. (2001) Desorption of dye from activated carbon beds: Effects of temperature, pH, and alcohol. Water Research, 35: 4159–4165. doi:10.1016/S0043-1354(01)00127-0
  • Hadi, M.; McKay, G.; Samarghandi, M.R.; Maleki, A.; Aminabad, M.S. (2012) Prediction of optimum adsorption isotherm: Comparison of chi–square and log–likelihood statistics. Desalination Water Treat, 49: 81–94. doi:10.1080/19443994.2012.708202
  • Parker Jr, G.R.;. (1995) Optimum isotherm equation and thermodynamic interpretation for aqueous 1,1,2-trichloroethene adsorption isotherms on three adsorbents. Adsorption, 1 (2): 113–132. doi:10.1007/BF00705000
  • Shahbeig, H.; Bagheri, N.; Ghorbanian., S.A.; Hallajisani, A.; Poorkarimi, S. (2013) A new adsorption isotherm model of aqueous solutions on granular activated carbon. Wjms, 9: 243–254.
  • Baudu, M.;, Etude des interactions solute–fibres de charbon actif. Application et regeneration, Ph.D. diss., Universite de Rennes I, 1990. doi:10.1099/00221287-136-2-327
  • McKay, G.; Mesdaghinia, A.; Nasseri, S.; Hadi, M.; Aminabad, M.S. (2014) Optimum isotherms of dyes sorption by activated carbon: fractional theoretical capacity and error analysis. Chemical Engineering Journal, 251: 236–247. doi:10.1016/j.cej.2014.04.054
  • van Vliet, B.M.; Weber Jr Jr, W.J.; Hozumi, H. (1980) Modeling and prediction of specific compound adsorption by activated carbon and synthetic adsorbents. Water Research, 14 (12): 1719–1728. doi:10.1016/0043-1354(80)90107-4
  • Sivarajasekar, N.; Baskar, R. (2014) Adsorption of basic red 9 onto activated carbon derived from immature cotton seeds: Isotherm studies and error analysis. Desalination and Water Treatment, 52: 1–23. doi:10.1080/19443994.2013.834518
  • Schay, G.;. (1982) On the definition of interfacial excesses in a system consisting of an insoluble solid adsorbent and a binary liquid mixture. Colloid and Polymer Science, 26: 888–891. doi:10.1007/BF01419100
  • Giles, C.H.; MacEwan, T.H.; Nakhwa, S.N.; Smith, D. (1960) Studies in adsorption. Part XI. A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurements of specific surface areas of solids. Journal Chemical Social, 10: 3973–3993. doi:10.1039/jr9600003973
  • Limousin, G.; Gaudet, J.-P.; Charlet, L.; Szenknect, S.; Barthes, V.; Krimissa, M. (2007) Review: sorption isotherms: A review on physical bases, modeling and measurement. Applied Geochemistry, 22: 249–275. doi:10.1016/j.apgeochem.2006.09.010

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.