175
Views
8
CrossRef citations to date
0
Altmetric
Adsorption

Environmental water remediation using covalently functionalized zerovalent iron nanocomposites with 2-pyridinecarboxaldehyde via 3-aminopropyltrimethoxysilane and ethylenediamine

, , &
Pages 1125-1140 | Received 28 Aug 2018, Accepted 24 Sep 2018, Published online: 04 Oct 2018

References

  • Mahmoud, M.E.; El Zokm, G.M.; Farag, A.E.; Abdelwahab, M.S. (2017) Assessment of heat-inactivated marine Aspergillus flavus as a novel biosorbent for removal of Cd(II), Hg(II), and Pb(II) from water. Environment Sciences Pollution R, 24:18218–18228.
  • Mahmoud, M.E.; Saad, E.A.; Soliman, M.A.; Abdelwahab, M.S. (2017) Encapsulation of nano zerovalent iron with ethylenediamine and diethylenetriamine for removing cobalt and zinc and their radionuclides from water. Environment Chemical Engineering Journal, 5:5157–5168.
  • Mahmoud, M.E.; Saad, E.A.; Soliman, M.A.; Abdelwahab, M.S. (2016) Synthesis and surface protection of nano zerovalent iron (NZVI) with 3-aminopropyltrimethoxysilane for water remediation of cobalt and zinc and their radioactive isotopes. RSC Advances, 6:66242–66251.
  • Lakouraj, M.M.; Mojerlou, F.; Zare, E.N. (2014) Nanogel and superparamagnetic nanocomposite based on sodium alginate for sorption of heavy metal ions. Carbohydrate Polym, 106:34–41.
  • Zare, E.N.; Lakouraj, M.M.; Moghadam, P.N.; Hasanzadeh, R. (2015) Novel conducting nanocomposite based on polypyrrole and modified poly(styrenealtmaleic anhydride) via emulsion polymerization: synthesis, characterization, antioxidant and heavy metal sorbent activity. Polym. Compos., 36:138–144.
  • Zare, E.N.; Lakouraj, M.M. (2014) Biodegradable polyaniline/dextrin conductive nanocomposites: synthesis, characterization, investigation of antioxidant activity and sorption of heavy metal ions. Iran Polymer Journal, 23:257–266.
  • Zare, E.N.; Motahari, A.; Sillanpää, M. (2018) Nanoadsorbents based on conducting polymer nanocomposites with main focus on polyaniline and its derivatives for removal of heavy metal ions/dyes: A review. Environmental Research, 162:173–195.
  • Lakouraj, M.M.; Hasanzadeh, F.; Zare, E.N. (2014) Nanogel and super-paramagnetic nanocomposite of thiacalix[4]arene functionalized chitosan: synthesis, characterization and heavy metal sorption. Iran Polym Journal, 23:933–945.
  • Zare, E.N.; Lakouraj, M.M.; Ramezani, A. (2016) Efficient sorption of Pb(II) from an aqueous solution using a poly(aniline-co-3-aminobenzoic acid)-based magnetic core–shell nanocomposite. New Journal Chemical, 40:2521–2529.
  • Hasanzadeh, R.; Moghadam, P.N.; Laleh, N.B.; Zare, E.N. (2016) Sulfonated magnetic nanocomposite based on reactive PGMA-MAn copolymer@Fe3O4 nanoparticles: effective removal of Cu(II) ions from aqueous solutions. Internal Journal Polym Sciences, 2016: 15 pages.
  • Zare, E.N.; Lakouraj, M.M.; Masoum, M. (2018) Efficient removal of Pb(II) and Cd(II) from water by cross-linked poly(N-vinylpyrrolidone-co-maleic anhydride)@eggshell/Fe3O4 environmentally friendly nanocomposite, Desalin. Water Treatment, 106:209–219.
  • Zare, E.N.; Lakouraj, M.M.; Ramezani, A. (2015) Effective adsorption of heavy metal cations by super-paramagnetic poly(aniline-co-m-phenylenediamine)@Fe3O4 nanocomposite. Advancement Polym Technical, 34:21501(1 11.
  • Zare, E.N.; Lakouraj, M.M.; Kasirian, N. (2018) Development of effective nano-biosorbent based on poly m-phenylenediamine grafted dextrin for removal of Pb (II) and methylene blue from water. Carbohydrate Polym, 201:539–548.
  • Su, Y.F.; Yu-Ling, C.; Shih, Y.-H. (2013) Removal of trichloroethylene by zerovalent iron/activated carbon derived from agricultural wastes. Journal Environment Manage, 129:361–366.
  • Alqadami, A.A.; Naushad, M.; Abdalla, M.A.; Khan, M.R.; Alothman, Z.A. (2016) Adsorptive removal of toxic dye using Fe3O4–TSC nanocomposite: equilibrium, Kinetic, and thermodynamic studies. Journal Chemical Engineering Data, 61:3806–3813.
  • Aly, Z.; Graulet, A.; Scales, N.; Hanley, T. (2014) Removal of aluminium from aqueous solutions using PAN-based adsorbents: characterisation, kinetics, equilibrium and thermodynamic studies. Environment Sciences Pollution Researcher, 21:3972–3986.
  • Chen, M.; Shafer-Peltier, K.; Randtke, S.J.; Peltier, E. (2018) Competitive association of cations with poly(sodium 4-styrenesulfonate) (PSS) and heavy metal removal from water by PSS-assisted ultrafiltration. Chemical Engineering Journal, 344:155–164.
  • Dickinson, M.; Scott, T.B.; Crane, R.A. (2015) Nanoscale zero-valent iron particles for the remediation of plutonium and uranium contaminated solutions. Chemical Engineering Journal, 262:319–325.
  • Fischer, M.;. (2016) Interaction of water with (silico) aluminophosphate zeotypes: a comparative investigation using dispersion-corrected DFT. Physical Chemical Chemical Physical, 18:15738–15750.
  • Garcia, F.E.; Cazon, J.P.; Montesinos, V.N.; Donati, E.R.; Litter, M.I. (2018) Combined strategy for removal of reactive black 5 by biomass sorption on Macrocystis pyrifera and zerovalent iron nanoparticles. Journal Environment Manage, 207:70–79.
  • Hao, L.; Wang, N.; Wang, C.; Li, G. (2018) Arsenic removal from water and river water by the combined adsorption – UF membrane process. Chemosphere, 202:768–776.
  • Ho, Y.S.;. (2006) Review of second-order models for adsorption systems. Journal of Hazardous Materials, 136:681–689.
  • Hoseinian, F.S.; Rezai, B.; Kowsari, E.; Safari, M. (2018) Kinetic study of Ni(II) removal using ion flotation: effect of chemical interactions. Miner Engineering, 119:212–221.
  • Jia, Z.; Shu, Y.; Huang, R.; Liu, J.; Liu, L. (2018) Enhanced reactivity of nZVI embedded into supermacroporous cryogels for highly efficient Cr(VI) and total Cr removal from aqueous solution. Chemosphere, 199:232–242.
  • Kenawya, E.; Ghfara, A.A.; Naushad, M.; ALOthm, Z.A.; Habilab, M.A.; Albadarin, A.B. (2017) Efficient removal of Co(II) metal ion from aqueous solution using cost-effective oxidized activated carbon: kinetic and isotherm studies. Desalin Water Treat, 70:220–226.
  • Kobielska, P.A.; Howarth, A.J.; Farha, O.K.; Nayak, S. (2018) Metal–organic frameworks for heavy metal removal from water. Coord Chemical Reviews, 358:92–107.
  • Laipan, M.; Fu, H.; Zhu, R.; Sun, L.; Steel, R.M.; Ye, S.; He, H. (2018) Calcined Mg/Al-LDH for acidic wastewater treatment: simultaneous neutralization and contaminant removal. Applications Clay Sciences, 153:46–53.
  • Li, G.; Xu, Q.; Jin, X.; Li, R.; Dharmarajan, R.; Chen, Z. (2018) Enhanced adsorption and Fenton oxidation of 2,4-dichlorophenol in aqueous solution using organobentonite supported nZVI. Sep Purification Technological, 197:401–406.
  • Li, J.; Chen, J.; Chena, S. (2018) Supercritical water treatment of heavy metal and arsenic metalloid-bioaccumulating-biomass. Ecotoxicology and Environmental Safety, 157:102–110.
  • Mahmoud, M.E.; Abdelwahab, M.S.; Abdou, A.E. (2016) Enhanced removal of lead and cadmium from water by Fe3O4-cross linked-O-phenylenediamine nano-composite. Sep Sciences Technological, 51:237–247.
  • Mahmoud, M.E.; Abdelwahab, M.S.; Fathallah, E.I. (2013) Design of nvel nano-sorbents based on nano magnetic iron oxide-bound-nano silicon oxide-immobilized-triethylenetetramine for implementation in water treatment of heavy metals. Chemical Engineering Journal, 223:318–327.
  • Mahmoud, M.E.; Hassan, S.S.M.; Kamel, A.H.; Elserw, M.I.A. (2018) Development of microwave-assisted functionalized nanosilicas for instantaneous removal of heavy metals. Powder Technological, 326:454–466.
  • Dawood, S.; Sen, T.K.; Phan, C. (2017) Synthesis and characterization of slow pyrolysis pine cone bio-char in the removal of organic and inorganic pollutants from aqueous solution by adsorption: kinetic, equilibrium, mechanism and thermodynamic. Bioresource Technology, 246:76–81.
  • Phing, A.L.;. (2014) A review on economically adsorbents on heavy metals removal in water and wastewater. Re/Views in Environmental Science and Bio/Technology (Online), 13:163–181.
  • Shang, J.; Zong, M.Z.; Yu, Y.; Kong, X.; Du, Q.; Liao, Q. (2017) Removal of chromium (VI) from water using nanoscale zerovalent iron particles supported on herb-residue biochar. Journal Environment Manage, 197:331–337.
  • Tso, C.P.; Shih, Y.-H. (2018) Effect of carboxylic acids on the properties of zerovalent iron toward adsorption and degradation of trichloroethylene. Journal Environment Manage, 206:817–825.
  • Aksu, Z.;. (2002) Determination of the equilibrium, kinetic and thermodynamic parameters of the batch biosorption of lead (II) ions onto Chlorella vulgaris. Process Biochemistry (Barking, London, England), 38:89–99.
  • Fayazi, M.; Ghanei-Motlagh, M.; Taher, M.A. (2015) The adsorption of basic dye (alizarin red s) from aqueous solution onto activated carbon/γ-Fe2O3 nano-composite: kinetic and equilibrium studies, Mater. Sciences Semicond Processing, 40:35–43.
  • Vukovic, G.D.; Marinkovic, A.D.; Skapin, S.D.; Ristic, M.D.; Aleksic, R.; Peric-Grujic, A.A.; Uskokovic, P.S. (2011) Removal of lead from water by amino modified multi-walled carbon nanotubes. Chemical Engineering Journal, 173:855–865.
  • Wang, S.G.; Gong, W.X.; Liu, X.W.; Yao, Y.W.; Gao, B.Y.; Yue, Q.Y. (2007) Removal of lead(II) from aqueous solution by adsorption onto manganese oxide-coated carbon nanotubes. Separation and Purification Technology, 58:17–23.
  • Sankararamakrishnan, N.; Jaiswal, M.; Verma, N. (2014) Composite nanofloral clusters of carbon nanotubes and activated alumina: an efficient sorbent for heavy metal removal. Chemical Engineering Journal, 235:1–9.
  • Venkata Ramana, D.K.; Yu, J.S.; Seshaiah, K. (2013) Silver nanoparticles deposited multiwalled carbon nanotubes for removal of Cu(II) and Cd(II) from water: surface, kinetic, equilibrium and thermal adsorption properties. Chemical Engineering Journal, 223:806–815.
  • Luo, C.; Wei, R.; Guo, D.; Zhang, S.; Yan, S. (2013) Adsorption behavior of MnO2 functionalized multi-walled carbon nanoubes for removal of cadmium from aqueous solutions. Chemical Engineering Journal, 225:406–415.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.