332
Views
6
CrossRef citations to date
0
Altmetric
Adsorption

Antimony removal from aqueous solutions using magnetic nickel ferrite (NiFe2O4) nanoparticles

, &
Pages 1141-1158 | Received 02 Apr 2018, Accepted 03 Oct 2018, Published online: 16 Oct 2018

References

  • Anderson, C.G.; (2012) The metallurgy of antimony. Chemie der Erde - Geochemistry, 72:3–8. doi:10.1016/j.chemer.2012.04.001
  • Du, X.; Qu, F.; Liang, H.; Li, K.; Yu, H.; Bai, L.; Li, G. (2014) Removal of antimony (III) from polluted surface water using a hybrid coagulation–flocculation–ultrafiltration (CF–UF) process. Chemical Engineering Journal, 254:293–301. doi:10.1016/j.cej.2014.05.126
  • Filella, M.; Belzile, N.; Chen, Y.W. (2002) Antimony in the environment: a review focused on natural waters I. Occurrence. Earth-Science Reviews, 57:125–176. doi:10.1016/S0012-8252(01)00070-8
  • Kang, M.; Kawasaki, M.; Tamada, S.; Kamei, T.; Magara, Y. (2000) Effect of pH on the removal of arsenic and antimony using reverse osmosis membranes. Desalination, 131 (1–3):293–298. doi:10.1016/S0011-9164(00)90027-4
  • Koparal, A.S.; Özgür, R.; Öğütveren, Ü.B.; Bergmann, H. (2004) Antimony removal from model acid solutions by electrodeposition. Separation and Purification Technology, 37 (2):107–116. doi:10.1016/j.seppur.2003.09.001
  • Guo, X.; Wu, Z.; He, M. (2009) Removal of antimony(V) and antimony(III) from drinking water by coagulation-flocculation-sedimentation (CFS). Water Research, 43 (17):4327–4335. doi:10.1016/j.watres.2009.06.033
  • Guo, X.; Wu, Z.; He, M.; Meng, X.; Jin, X.; Qiu, N.; Zhang, J. (2014) Adsorption of antimony onto iron oxyhydroxides: adsorption behavior and surface structure. Journal of Hazardous Materials, 276:339–345. doi:10.1016/j.jhazmat.2014.05.025
  • Ilavský, J.; Barloková, D.; Munka, K. (2015) Antimony removal from water by adsorption to iron-based sorption materials. Water, Air, & Soil Pollution, 226 (1): 2238–2246. doi:10.1007/s11270-014-2238-9
  • Kolbe, F.; Weiss, H.; Morgenstern, P.; Wennrich, R.; Lorenz, W.; Schurk, K.; Stanjek, H.; Daus, B. (2011) Sorption of aqueous antimony and arsenic species onto akaganeite. Journal of Colloid and Interface Science, 357 (2):460–465. doi:10.1016/j.jcis.2011.01.095
  • Leng, Y.; Guo, W.; Su, S.; Yi, C.; Xing, L. (2012) Removal of antimony(III) from aqueous solution by graphene as an adsorbent. Chemical Engineering Journal, 211-212:406–411. doi:10.1016/j.cej.2012.09.078
  • Shan, C.; Ma, Z.; Tong, M. (2014) Efficient removal of trace antimony(III) through adsorption by hematite modified magnetic nanoparticles. Journal of Hazardous Materials, 268:229–236. doi:10.1016/j.jhazmat.2014.01.020
  • Wang, X.; He, M.; Lin, C.; Gao, Y.; Zheng, L. (2012) Antimony(III) oxidation and antimony(V) adsorption reactions on synthetic manganite. Chemie der Erde - Geochemistry, 72:41–47. doi:10.1016/j.chemer.2012.02.002
  • Zhu, J.; Wu, F.; Pan, X.; Guo, J.; Wen, D. (2011) Removal of antimony from antimony mine flotation wastewater by electrocoagulation with aluminum electrodes. Journal of Environmental Sciences, 23 (7):1066–1071. doi:10.1016/S1001-0742(10)60550-5
  • Iqbal, M.; Saeed, A.; Edyvean, R.G.J. (2013) Bioremoval of antimony(III) from contaminated water using several plant wastes: optimization of batch and dynamic flow conditions for sorption by green bean husk (Vigna radiata). Chemical Engineering Journal, 225:192–201. doi:10.1016/j.cej.2013.03.079
  • Wang, H.; Chen, F.; Mu, S.; Zhang, D.; Pan, X.; Lee, D.J.; Chang, J.S. (2013) Removal of antimony (Sb(V)) from Sb mine drainage: biological sulfate reduction and sulfide oxidation-precipitation. Bioresource Technology, 146:799–802. doi:10.1016/j.biortech.2013.08.002
  • Sarı, A.; Sahinoglu, G.; Tüzen, M. (2012) Antimony(III) adsorption from aqueous solution using raw perlite and Mn-modified perlite: equilibrium, thermodynamic, and kinetic studies. Industrial Engineering Chemical Researcher, 51:6877–6886. doi:10.1021/ie300243n
  • Xi, J.; He, M.; Lin, C. (2011) Adsorption of antimony(III) and antimony(V) on bentonite: kinetics, thermodynamics and anion competition. Microchemical Journal, 97 (1):85–91. doi:10.1016/j.microc.2010.05.017
  • Leyva, A.G.; Marrero, J.; Smichowski, P.; Cicerone, D. (2001) Sorption of antimony onto hydroxyapatite. Environmental Science & Technology, 35:3669–3675.
  • Leuz, A.K.; Mönch, H.; Johnson, C.A. (2006) Sorption of Sb(III) and Sb(V) to goethite: influence on Sb(III) oxidation and mobilization. Environmental Science & Technology, 40:7277–7282.
  • Xu, W.; Wang, H.; Liu, R.; Zhao, X.; Qu, J. (2011) The mechanism of antimony(III) removal and its reactions on the surfaces of Fe-Mn binary oxide. Journal of Colloid and Interface Science, 363 (1):320–326. doi:10.1016/j.jcis.2011.07.026
  • Salam, M.A.; Mohamed, R.M. (2013) Removal of antimony (III) by multi-walled carbon nanotubes from model solution and environmental samples. Chemical Engineering Research and Design, 91 (7):1352–1360. doi:10.1016/j.cherd.2013.02.007
  • Tang, W.; Su, Y.; Li, Q.; Gao, S.; Shang, J.K. (2013) Superparamagnetic magnesium ferrite nanoadsorbent for effective arsenic (III, V) removal and easy magnetic separation. Water Research, 47 (11):3624–3634. doi:10.1016/j.watres.2013.04.023
  • Cui, H.; Li, Q.; Gao, S.; Shang, J.K. (2012) Strong adsorption of arsenic species by amorphous zirconium oxide nanoparticles. Journal of Industrial and Engineering Chemistry, 18 (4):1418–1427. doi:10.1016/j.jiec.2012.01.045
  • Gimenez, J.; Martinez, M.; de Pablo, J.; Rovira, M.; Duro, L. (2007) Arsenic sorption onto natural hematite, magnetite, and goethite. Journal of Hazardous Materials, 141 (3):575–580. doi:10.1016/j.jhazmat.2006.07.020
  • Zhao, D.-L.; Lv, Q.; Shen, Z.-M. (2009) Fabrication and microwave absorbing properties of Ni–zn spinel ferrites. Journal of Alloys and Compounds, 480 (2):634–638. doi:10.1016/j.jallcom.2009.01.130
  • Fang, D.-L.; Chen, C.-S.; Winnubst, A.J.A. (2008) Preparation and electrical properties of FexCu0.10Ni0.66Mn2.24−xO4 (0≤x≤0.90) NTC ceramics. Journal of Alloys and Compounds, 454 (1–2):286–291. doi:10.1016/j.jallcom.2006.12.059
  • Arias, J.L.; Ruiz, M.; Gallardo, V.; Delgado, A.V. (2008) Tegafur loading and release properties of magnetite/poly(alkylcyanoacrylate) (core/shell) nanoparticles. Journal of Controlled Release: Official Journal of the Controlled Release Society, 125 (1):50–58. doi:10.1016/j.jconrel.2007.09.008
  • Ma, J.; Yu, F.; Zhou, L.; Jin, L.; Yang, M.; Luan, J.; Tang, Y.; Fan, H.; Yuan, Z.; Chen, J. (2008) Enhanced adsorptive removal of methyl orange and methylene blue from aqueous solution by alkali-activated multiwalled carbon nanotubes. Environment Sciences and Technological, 42:1201–1206.
  • Zhao, X.; Shi, Y.; Cai, Y.; Mou, S. (2008) Cetyltrimethylammonium bromide-coated magnetic nanoparticles for the preconcentration of phenolic compounds from environmental water samples. Environmental Science & Technology, 42:1201–1206.
  • Karcıoğlu Karakaş, Z.; Boncukcuoğlu, R.; Karakaş, İ.H.; Ertuğrul, M. (2015) The effects of heat treatment on the synthesis of nickel ferrite (NiFe2O4) nanoparticles using the microwave assisted combustion method. Journal of Magnetism and Magnetic Materials, 374:298–306. doi:10.1016/j.jmmm.2014.08.045
  • Zhang, Y.; Yang, M.; Huang, X. (2003) Arsenic(V) removal with a Ce(IV)-doped iron oxide adsorbent. Chemosphere, 51 (9):945–952. doi:10.1016/S0045-6535(02)00850-0
  • Öztürk, A.; Malkoc, E. (2014) Adsorptive potential of cationic Basic Yellow 2 (BY2) dye onto natural untreated clay (NUC) from aqueous phase: mass transfer analysis, kinetic and equilibrium profile. Applied Surface Science, 299:105–115. doi:10.1016/j.apsusc.2014.01.193
  • Ahmadi, M.; Madrakian, T.; Afkhami, A. (2015) Solid phase extraction of doxorubicin using molecularly imprinted polymer coated magnetite nanospheres prior to its spectrofluorometric determination. New Journal of Chemistry, 39 (1):163–171. doi:10.1039/C4NJ01402B
  • Bhosale, S.V.; Bankar, D.N.; Bhoraskar, S.V.; Mathe, V.L. (2016) Analysis of electrokinetic properties of NiFe 2 O 4 nanoparticles synthesized by DC thermal plasma route and its use in adsorption of humic substances. Journal of Environmental Chemical Engineering, 4 (2):1584–1593. doi:10.1016/j.jece.2016.02.001
  • Zandipak, R.; Sobhanardakani, S. (2016) Synthesis of NiFe2O4 nanoparticles for removal of anionic dyes from aqueous solution. Desalination and Water Treatment, 57 (24):11348–11360. doi:10.1080/19443994.2015.1050701
  • Sobhanardakani, S.; Zandipak, R.; Sahraei, R. (2013) Removal of Janus Green dye from aqueous solutions using oxidized multi-walled carbon nanotubes. Toxicological & Environmental Chemistry, 95 (6):909–918. doi:10.1080/02772248.2013.840379
  • Ghaedi, M.; Ansari, A.; Habibi, M.H.; Asghari, A.R. (2014) Removal of malachite green from aqueous solution by zinc oxide nanoparticle loaded on activated carbon: kinetics and isotherm study. Journal of Industrial and Engineering Chemistry, 20 (1):17–28. doi:10.1016/j.jiec.2013.04.031
  • An, S.; Liu, X.; Yang, L.; Zhang, L. (2015) Enhancement removal of crystal violet dye using magnetic calcium ferrite nanoparticle: study in single- and binary-solute systems. Chemical Engineering Research and Design, 94:726–735. doi:10.1016/j.cherd.2014.10.013
  • Bazrafshan, E.; Kord Mostafapour, F.; Rahdar, S.; Mahvi, A.H. (2014) Equilibrium and thermodynamics studies for decolorization of Reactive Black 5 (RB5) by adsorption onto MWCNTs. Desalination and Water Treatment, 54 (8):2241–2251. doi:10.1080/19443994.2014.895778
  • Yilmaz, A.E.; Boncukcuoğlu, R.; Kocakerim, M.; Karakaş, İ.H. (2011) Waste utilization: the removal of textile dye (Bomaplex Red CR-L) from aqueous solution on sludge waste from electrocoagulation as adsorbent. Desalination, 277 (1–3):156–163. doi:10.1016/j.desal.2011.04.018
  • Jia, Z.; Wang, Q.; Liu, J.; Xu, L.; Zhu, R. (2013) Effective removal of phosphate from aqueous solution using mesoporous rodlike NiFe2O4 as magnetically separable adsorbent. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 436:495–503. doi:10.1016/j.colsurfa.2013.07.025
  • Karcioğlu Karakaş, Z.; Boncukcuoğlu, R.; Karakaş, İ.H. (2016) Adsorptive properties of As(III) from aqueous solution using magnetic nickel ferrite (NiFe2O4) nanoparticles: isotherm and kinetic studies. Separation Science and Technology, 52 (1):21–34. doi:10.1080/01496395.2016.1240693

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.