269
Views
13
CrossRef citations to date
0
Altmetric
Adsorption

Combined adsorption process and photocatalytic degradation of some commercial herbicides over N-doped TiO2 particles supported on recyclable magnetic hexagonal mesoporous silica

&
Pages 1697-1709 | Received 14 Mar 2018, Accepted 17 Oct 2018, Published online: 25 Oct 2018

References

  • Morteza, Z.; Mousavi, S.B.; Baghestani, M.H.; Aitio, A. (2017) An assessment of agricultural pesticide use in Iran 2012-2014. Journal of Environmental Health Science and Engineering, 15: 10. doi:10.1186/s40201-017-0272-4.
  • Pimentel, D.;. (1995) Amounts of pesticides reaching target pests: environmental impacts and ethics. Journal of Agricultural and Environmental Ethics, 8: 17–29. doi:10.1007/BF02286399.
  • Tor, J.; Xu, C.; Stucki, J.M.; Wander, M.; Sims, G.K. (2000) Trifluralin degradation under micro-biologically induced nitrate and Fe (III) reducing conditions. Environmental Science and Technology, 34: 3148–3152. doi:10.1021/es9912473.
  • González, N.V.; Soloneski, S.E.; Larramendy, M.L. (2006) Genotoxicity analysis of the phenoxy herbicide dicamba in mammalian cells in vitro. Toxicology In Vitro, 20: 1481–1487. doi:10.1016/j.tiv.2006.05.001.
  • Van Bruggen, A.H.C.; He, M.M.; Shin, K.; Mai, V.; Jeong, K.C.; Finckh, M.R.; Morris, J.G., Jr. (2018) Environmental and health effects of the herbicide glyphosate. Science of the Total Environment, 616: 255–268. doi:10.1016/j.scitotenv.2017.10.309.
  • Jonidi-Jafar, A.; Gholami, M.; Farzadkia, M.; Esrafili, A.; Shirzad-Siboni, M. (2017) Application of Ni-doped ZnO nanorods for degradation of diazinon: kinetics and by-products. Separation Science and Technology, 52: 2395–2406. doi:10.1080/01496395.2017.1303508.
  • Meng, J.; Yang, B.; Zhang, Y.; Shu, X.; Shu, J. (2009) Ozonation of trifluralin particles: an experimental investigation with a vacuum ultraviolet photoionization aerosol time-of-flight mass spectrometer. Journal of Hazardous Materials, 172: 390–394. doi:10.1016/j.jhazmat.2009.07.020.
  • Le Person, A.; Mellouki, A.; Munoz, A.; Borras, E.; Martin-Reviejo, M.; Wirtz, K. (2007) Trifluralin: photolysis under sunlight conditions and reaction with HO radical dot radicals. Chemosphere, 67: 376–383. doi:10.1016/j.chemosphere.2006.09.023.
  • Du, Y.; Zhang, N.; Wang, C. (2010) Photo-catalytic degradation of trifluralin by SnO2-doped Cu2O crystals. Catalysis Communication, 11: 670–674. doi:10.1016/j.catcom.2010.01.021.
  • Djebbar, K.; Zertal, A.; Sehili, T. (2006) Photocatalytic degradation of 2,4- dichlorophenoxyacetic acid and 4-chloro-2-methylphenoxyacetic acid in water by using TiO2. Environmental Technology, 27: 1191–1197. doi:10.1080/09593332708618732.
  • Kamble, S.P.; Sawant, S.B.; Pangarkar, V.G. (2006) Photocatalytic mineralization of phenoxyacetic acid using concentrated solar radiation and titanium dioxide in slurry photoreactor. Chemical Engineering Research and Design, 84: 355–362. doi:10.1205/cherd05011.
  • Vega, A.; Imoberdorf, G.E.; Mohseni, M. (2011) Photocatalytic degradation of 2,4- dichlorophenoxyacetic acid in a fluidized bed photoreactor with composite template-free TiO2 photocatalyst. Applied Catalysis A: General, 405: 120–128. doi:10.1016/j.apcata.2011.07.033.
  • López, A.; Coll, A.; Lescano, M.; Zalazar, C. (2017) Advanced oxidation of commercial herbicides mixture: experimental design and phytotoxicity evaluation. Environmental Science and Pollution Research. doi:10.1007/s11356-017-9041-2.
  • Shifu, C.; Yunzhang, L. (2007) Study on the photocatalytic degradation of glyphosate by TiO2 photocatalyst. Chemosphere, 67: 1010–1017. doi:10.1016/j.chemosphere.2006.10.054.
  • Assalin, M.R.; De Moraes, S.G.; Queiroz, S.C.N.; Ferracini, V.L.; Duran, N. (2010) Studies on degradation of glyphosate by several oxidative chemical processes: ozonation, photolysis and heterogeneous photocatalysis. Journal of Environmental Science and Health B, 45: 89–94. doi:10.1080/03601230903404598.
  • Kongsong, P.; Sikong, L.; Niyomwas, S.; Rachpech, V. (2014) Photocatalytic degradation of glyphosate in water by N–doped SnO2/TiO2 thin film coated glass fibers. Photochemistry and Photobiology, 90: 1243–1250. doi:10.1111/php.12338.
  • Despotović, V.D.; Abramović, B.F.; Šojić, D.V.; Kler, S.J.; Dalmacija, M.B.; Bjelica, L.J.; Orčić, D.Z. (2012) Photocatalytic degradation of herbicide quinmerac in various types of natural water. Water, Air, and Soil Pollution, 223: 3009–3020. doi:10.1007/s11270-012-1084-x.
  • Liu, X.; Hong, H.; Wu, X.; Wu, Y.; Ma, Y.; Guan, W.; Ye, Y. (2016) Synthesis of TiO2–reduced graphene oxide nanocomposites for efficient adsorption and photodegradation of herbicides. Water, Air, and Soil Pollution, 227: 21–29. doi:10.1007/s11270-015-2719-5.
  • Asahi, R.; Marikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science, 293: 269–271. doi:10.1126/science.1061051.
  • Kralchevska, R.; Milanova, M.; Tisler, T.; Pintar, A.; Tyuliev, G.; Todorovsky, D. (2012) Photocatalytic degradation of the herbicide iodosulfuron by neodymium or nitrogen doped TiO2. Material Chemistry and Physics, 133: 1116–1126. doi:10.1016/j.matchemphys.2012.02.025.
  • Castillo, J.; Bueno, H.A.; Pelaez, M.A.; Sanchez-Salas, J.L.; Dionysiou, D.D.; Bandala, E.R. (2013) Solar water disinfection using NF-codoped TiO2 Photocatalysis: estimation of Scaling-up Parameters. International Journal of Chemical Reactor Enginering, 11: 701.
  • Sun, J.; Qiao, L.; Sun, S.; Wang, G. (2008) Photocatalytic degradation of Orange G on nitrogen-doped TiO2 catalysts under visible light and sunlight irradiation. Journal of Hazardous Materials, 155: 312–319. doi:10.1016/j.jhazmat.2007.11.062.
  • Kosowska, B.; Mozia, S.; Morawski, A.W.; Grzmil, B.; Janus, M.; Kalucki, K. (2005) The preparation of TiO2–nitrogen doped by calcination of TiO2·xH2O under ammonia atmosphere for visible light photocatalysis. Solar Energy Materials and Solar Cells, 88: 269–277. doi:10.1016/j.solmat.2004.11.001.
  • Asahi, R.; Morikawa, T.; Irie, H.; Ohwaki, T. (2014) Nitrogen-doped titanium dioxide as visible-light-sensitive photocatalyst: designs, developments, and prospects. Chemical Review, 114: 9824−9852. doi:10.1021/cr5000738.
  • Mbiri, A.; Wittstock, G.; Taffa, D.H.; Gatebe, E.; Baya, J.; Wark, M. (2017) Photocatalytic degradation of the herbicide chloridazon on mesoporous titania/zirconia nanopowders. Environmental Science and Pollution Research. doi:10.1007/s11356-017-1023-x.
  • Yamashita, H.; Kawasaki, S.; Yuan, S.; Maekawa, K.; Anpo, M.; Matsumura, M. (2007) Efficient adsorption and photocatalytic degradation of organic pollutants diluted in water using the fluoride-modified hydrophobic titanium oxide photocatalysts: Ti-containing Beta zeolite and TiO2 loaded on HMS mesoporous silica. Catalysis Today, 126: 375–381. doi:10.1016/j.cattod.2007.06.018.
  • Zhuang, Y.; Song, H.-Y.; Li, G.; Xu, Y.-J. (2010) Ti-HMS as a single-site photocatalyst for the gas-phase degradation of benzene. Material Letters, 64: 2491–2493. doi:10.1016/j.matlet.2010.07.080.
  • Bruzzoniti, M.C.; De Carlo, R.M.; Rivoira, L.; Del Bubba, M.; Pavani, M.; Riatti, M.; Onida, B. (2016) Adsorption of bentazone herbicide onto mesoporous silica: application to environmental water purification. Environmental Science and Pollution Research, 23: 5399–5409. doi:10.1007/s11356-015-5755-1.
  • Hamoule, T.; Peyrovi, M.H.; Rashidzadeh, M.; Toosi, M.R. (2011) Catalytic reforming of n-heptane over Pt/Al-HMS catalysts. Catalysis Communication, 16: 234–239. doi:10.1016/j.catcom.2011.09.020.
  • Javadian, H.; Vahedian, P.; Toosi, M.R. (2013) Adsorption characteristics of Ni(II) from aqueous solution and industrial wastewater onto Polyaniline/HMS nanocomposite powder. Applied Surface Science, 284: 13–22. doi:10.1016/j.apsusc.2013.06.111.
  • Laurent, S.; Forge, D.; Port, M.; Roch, A.; Robic, C.; Elst, L.V.; Muller, R.N. (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chemical Review, 108: 2064–2110. doi:10.1021/cr068445e.
  • Rashid, J.; Barakat, M.A.; Ruzmanova, Y.; Chianese, A. (2015) Fe3O4/SiO2/TiO2 nanoparticles for photocatalytic degradation of 2-chlorophenol in simulated wastewater. Environmental Science and Pollution Research, 22: 3149–3157. doi:10.1007/s11356-014-3598-9.
  • Tanev, T.; Pinnavaia, T.J. (1995) A neutral templating route to mesoporous molecular sieves. Science, 267: 865–867. doi:10.1126/science.267.5199.865.
  • Tian, H.; Li, J.; Shen, Q.; Wang, H.; Hao, Z.; Zou, L.; Hu, Q. (2009) Using shell-tunable mesoporous Fe3O4@HMS and magnetic separation to remove DDT from aqueous media. Journal of Hazardous Materials, 171: 459–464. doi:10.1016/j.jhazmat.2009.06.029.
  • Taoa, C.; Zhu, Y. (2014) Magnetic mesoporous silica nanoparticles for potential delivery of chemotherapeutic drugs and hyperthermia. Dalton Transition, 43: 15482–15490. doi:10.1039/C4DT01984A.
  • Nosaka, Y.; Matsushita, M.; Nishino, J.; Nosaka, A.Y. (2005) Nitrogen-doped titanium dioxide photocatalysts for visible response prepared by using organic compounds. Science and Technology of Advanced Materials, 6: 143–148. doi:10.1016/j.stam.2004.11.006.
  • Das, B.; Nair, R.G.; Rajbongshi, B.; Samdarshi, S.K. (2013) Investigation of the photoactivity of pristine and mixed phase N-doped titania under visible and solar irradiation. Materials Characterization, 83: 145–151. doi:10.1016/j.matchar.2013.06.009.
  • Toosi, M.R.; Peyravi, M.H.; Sajadi, J.; Bayani, M.J.; Manghabati, H. (2013) Photocatalytic purification of wastewater polluted by odorant sulfur compounds using titanium oxide in a continuous photoreactor. International Journal of Chemical Reactor Engineering, 11: 561–567. doi:10.1515/ijcre-2012-0044.
  • Hegazy, M.; Zhou, P.; Wu, G.; Wang, L.; Rahoui, N.; Taloub, N.; Huang, X.; Huang, Y. (2017) Construction of polymer coated core-shell magnetic mesoporous silica nanoparticles with triple responsive drug delivery. Polymer Chemistry, 8: 5852–5864. doi:10.1039/C7PY01179B.
  • Senthilnathan, J.; Philip, L. (2010) Photocatalytic degradation of lindane under UV and visible light using N-doped TiO2. Chemical Engineering Journal, 161: 83–92. doi:10.1016/j.cej.2010.04.034.
  • Mosafer, A.A.; Toosi, M.R.; Asghari, M. (2017) Effect study of hexagonal mesoporous silica/polyaniline nanocomposite on the structural properties of polysulfone membranes and its heavy metals removal efficiency. Separation Science and Technology, 52: 1775–1786. doi:10.1080/01496395.2017.1297455.
  • Daneshvar Tarigh, G.; Shemirani, F.; Seif Maz’hari, N. (2015) Fabrication of a reusable magnetic multi-walled carbon nanotube–tiO2 nanocomposite by electrostatic adsorption: enhanced photodegradation of malachite green. RSC Advances, 5: 35070–35079. doi:10.1039/C4RA15593A.
  • Chelme-Ayala, P.; Gamal El-Din, M.; Smith, D.W. (2010) Degradation of bromoxynil and trifluralin in natural water by direct photolysis and UV plus H2O2 advanced oxidation process. Water Research, 44: 2221–2228. doi:10.1016/j.watres.2009.12.045.
  • Dimou, A.D.; Sakkas, V.A.; Albanis, T.A. (2004) Photodegradation of trifluralin in natural waters and soils: degradation kinetics and influence of organic matter. International Journal of Environmental Analytical Chemistry, 84: 173–182. doi:10.1080/0306731031000149660.
  • Şeşenoğlu, İ.; Kartal, Ö.E.; Oğuz, H.; Erol, M.; Çalimli, A. (1999) Degradation of trifluralin by using TiO2 Photocatalyst. Review of Chemical Engineering, 15: 223–231. doi:10.1515/REVCE.1999.15.4.223.
  • Chávez-Moreno, C.; Ferrer, L.; Hinojosa-Reyes, L.; Hernández-Ramírez, A.; Cerdà, V.; Guzmán-Mar, J. (2013) On-line monitoring of the photocatalytic degradation of 2,4-D and dicamba using a solid-phase extraction-multisyringe flow injection system. Journal of Environmental Management, 129: 377–383. doi:10.1016/j.jenvman.2013.08.007.
  • Piera, E.; Calpe, J.C.; Brillas, E.; Domènech, X.; Peral, J. (2000) 2,4-Dichlorophenoxyacetic acid degradation by catalyzed ozonation: tiO2/UVA/O3 and Fe(II)/UVA/O3 systems. Applied Catalysis B: Environmental, 27: 169–177. doi:10.1016/S0926-3373(00)00149-1.
  • Giri, R.R.; Ozaki, H.; Ishida, T.; Takanami, R.; Taniguchi, S. (2007) Synergy of ozonation and photocatalysis to mineralize low concentration 2,4-dichlorophenoxyacetic acid in aqueous solution. Chemosphere, 66: 1610–1617. doi:10.1016/j.chemosphere.2006.08.007.
  • Maya-Treviño, M.L.; Guzmán-Mar, J.L.; Hinojosa-Reyes, L.; Ramos-Delgado, N.A.; Maldonado, M.I.; Hernández-Ramírez, A. (2014) Activity of the ZnO–fe2O3 catalyst on the degradation of Dicamba and 2,4-D herbicides using simulated solar light. Ceramics International, 40: 8701–8708. doi:10.1016/j.ceramint.2014.01.088.
  • Macías-Tamez, R.; Villanueva-Rodríguez, M.; Ramos-Delgado, N.A.; Maya-Treviño, L.; Hernández-Ramírez, A. (2017) Comparative study of the photocatalytic degradation of the herbicide 2,4-D using WO3/TiO2 and Fe2O3/TiO2 as Catalysts. Water, Air, and Soil Pollution, 228: 379–391. doi:10.1007/s11270-017-3560-9.
  • Tang, Y.; Zhang, G.; Liu, C.; Luo, S.; Xu, X. (2013) Magnetic TiO2-graphene composite as a high-performance and recyclable platform for efficient photocatalytic removal of herbicides from water. Journal of Hazardous Materials, 252: 115–122. doi:10.1016/j.jhazmat.2013.02.053.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.