98
Views
9
CrossRef citations to date
0
Altmetric
Adsorption

p-Sulphonatocalix[8]arene functionalized silica resin for the enhanced removal of methylene blue from wastewater: equilibrium and kinetic study

, ORCID Icon, , , &
Pages 2240-2251 | Received 23 Feb 2018, Accepted 29 Oct 2018, Published online: 22 Jan 2019

References

  • Kamboh, M.A.; Solangi, I.B.; Sherazi, S.T.H.; Memon, S. (2009) Synthesis and application of calix[4]arene-based resin for the removal of azo dyes. Journal of Hazardous Materials, 172 (1): 234. doi: 10.1016/j.jhazmat.2009.06.165.
  • Anitha, T.; Kumar, S. (2016) Synthesis of nano-sized chitosan blended polyvinyl alcohol for the removal of Eosin Yellow dye from aqueous solution. Journal of Water Processing Engineering, 13 (1): 127. doi: 10.1016/j.jwpe.2016.08.003.
  • Jothirani, R.; Kumar, P.S.; Saravanan, A. (2016) Ultrasonic modified corn pith for the sequestration of dye from aqueous solution. Journal of Industrial Engineering Chemical, 39 (1): 162. doi: 10.1016/j.jiec.2016.05.024.
  • Singh, S.N.; Mishra, S.; Jauhari, N. (2015) Degradation of anthroquinone dyes stimulated by fungi. In: microbial degradation of synthetic dyes in wastewaters. Springer, 2 (1): 333.
  • Suganya, S.; Kumar, S.; Saravanan, A.; Ravikumar, C. (2017) Computation of adsorption parameters for the removal of dye from wastewater by microwave assisted sawdust: theoretical and experimental analysis. Environment Toxicogical Pharmacology, 50 (29): 45. doi: 10.1016/j.etap.2017.01.014.
  • Seftel, E.M.; Niarchos, M.; Mitropoulos, C. (2015) Photocatalytic removal of phenol and methylene-blue in aqueous media using TiO2@LDH clay nanocom***posites. Catalysis Today, 252 (1): 120. doi: 10.1016/j.cattod.2014.10.030.
  • Subramaniam, R.; Ponnusamy, S.K. (2015) Novel adsorbent from agricultural waste (cashew NUT shell) for methylene blue dye removal: optimization by response surface methodology. Water Resources Industrial, 11 (1): 64. doi: 10.1016/j.wri.2015.07.002.
  • Middea, A.; Spinelli, L.S.; Souza, F.G. (2015) Synthesis and characterization of magnetic palygorskite nanoparticles and their application on methylene blue remotion from water. Applications Surfacef Sciences, 346 (1): 232. doi: 10.1016/j.apsusc.2015.03.080.
  • Rafatullah, M.; Sulaiman, O.; Hashim, R.; Ahmad, A. (2010) Adsorption of methylene blue on low-cost adsorbents: a review. Journal of Hazardous Materials, 177 (1–3): 70. doi: 10.1016/j.jhazmat.2009.12.047.
  • Dod, R.; Banerjee, G.; Saini, S. (2012) Adsorption of methylene blue using green pea peels (Pisum sativum): a cost-effective option for dye-based wastewater treatment. Biotechnology Bioproces Engineering, 17 (4): 862. doi: 10.1007/s12257-011-0614-5.
  • Hassan, S.S.; Nafady, A.; Solangi, A.R. (2015) Ultra-trace level electrochemical sensor for methylene blue dye based on nafion stabilized ibuprofen derived gold nanoparticles. Sensors Actuat B Chemical, 208 (1): 320. doi: 10.1016/j.snb.2014.11.021.
  • Ghaedi, M.; Nasab., A.G.; Khodadoust, S. (2015) Characterization of zinc oxide nanorods loaded on activated carbon as cheap and efficient adsorbent for removal of methylene blue. Journal of Industrial Engineering Chemical, 21 (1): 986. doi: 10.1016/j.jiec.2014.05.006.
  • Zhang, Z.; Wang, W.; Wang, A. (2015) Highly effective removal of methylene blue using functionalized attapulgite via hydrothermal process. Journal of Environment Science, 33 (1): 106. doi: 10.1016/j.jes.2014.12.014.
  • Mathivanan, V.; Geetha, M.S.; Ineya, R. (2016) Enhanced photocatalytic decolorization of reactive red by sonocatalysis using TiO2 catalyst: factorial design of experiments. Desalin, Water Treatment, 57 (15): 7120. doi: 10.1080/19443994.2014.983182.
  • Kamboh, M.A.; Solangi, I.B.; Sherazi, S.T.H.; Memon, S. (2011) A highly efficient calix[4]arene-based resin for the removal of azo dyes. Desalination, 268 (1): 83. doi: 10.1016/j.desal.2010.10.001.
  • Kamboh, M.A.; Akoz, E.; Memon, S.; Yilmaz, M. (2013) Synthesis of amino-substituted p-tert-butylcalix [4] arene for the removal of chicago sky blue and tropaeolin 000 azo dyes from aqueous environment. Water, Air, Soil Pollution, 224 (2): 1424. doi: 10.1007/s11270-012-1424-x.
  • Mitrogiannis, D.; Markou, G.; Çelekli, A.; Bozkurt, H. (2015) Biosorption of methylene blue onto arthrospira platensis biomass: kinetic, equilibrium and thermodynamic studies. Journal of Environment Chemical Engineering, 3 (1): 670. doi: 10.1016/j.jece.2015.02.008.
  • Aksoy, T.; Erdemir, S.; Yildiz, H.B.; Yilmaz, M. (2012) Novel water-soluble calix [4, 6] arene appended magnetic nanoparticles for the removal of the carcinogenic aromatic amines. Water, Air, Soil Pollution, 223 (7): 4129. doi: 10.1007/s11270-012-1179-4.
  • Jafari, S.; Zhao, F.; Zhao, D. (2015) A comparative study for the removal of methylene blue dye by N and S modified TiO2 adsorbents. Journal of Molecular Liquid, 207 (2): 90. doi: 10.1016/j.molliq.2015.03.026.
  • Marković, S.; Stanković, A.; Lopičić, Z. (2015) Application of raw peach shell particles for removal of methylene blue. Journal of Environment Chemical Engineering, (2): 716. doi: 10.1016/j.jece.2015.04.002.
  • Wong, Y.C.; Senan, M.S.R.; Atiqah, N.A. (2013) Removal of methylene blue and malachite green dye using different form of coconut fibre as absorbent. Journal of Basic Applications Sciences, 9 (1): 172.
  • Kumar, P.S.; Pavithra, J.; Suriya, S. (2015) Sargassum wightii, a marine alga is the source for the production of algal oil, bio-oil, and application in the dye wastewater treatment. Desalination and Water Treatment, 55 (5): 1342.
  • Kumar, P.S.; Varjani, S.J.; Suganya, S. (2018) Treatment of dye wastewater using an ultrasonic aided nanoparticle stacked activated carbon: kinetic and isotherm modelling. Bioresource Technological, 250 (1): 716. doi: 10.1016/j.biortech.2017.11.097.
  • Kamboh, M.A.; Bhatti, A.A.; Solangi, I.B. (2014) Adsorption of direct black-38 azo dye on p-tert-butylcalix[6]arene immobilized material. Arabian Journal of Chemistry, 7 (1): 125. doi: 10.1016/j.arabjc.2013.06.033.
  • Kamboh, M.A.; Solangi, I.B.; Sherazi, S.T.H.; Memon, S. (2011) Synthesis and application of p-tert-butylcalix[8]arene immobilized material for the removal of azo dyes. Journal Hazard Mater, 186 (1): 651. doi: 10.1016/j.jhazmat.2010.11.058.
  • Yilmaz, E.; Memon, S.; Yilmaz, M. (2010) Removal of direct azo dyes and aromatic amines from aqueous solutions using two β-cyclodextrin-based polymers. Journal of Hazard Mater, 174 (1–3): 592. doi: 10.1016/j.jhazmat.2009.09.093.
  • Shahabuddin, S.; Sarih, N.M.; Kamboh, M.A. (2016) Synthesis of polyaniline coated graphene oxide@SrTiO3 nanocube nanocomposites for enhanced removal of carcinogenic dyes from aqueous solution. Polymers, 8 (9): 305. doi: 10.3390/polym8090305.
  • Kamboh, M.A.; Memon, S.; Zardari, L.A. (2018) Removal of toxic metals from canola oil by newly synthesized calixarene-based resin. Turkish Journal of Chemical, 42 (3): 918.
  • Yilmaz, M.; Memon, S.; Tabakci, M. (2006) New frontiers in polymer research. Hauppauge Nov Sciences Publication, 125171. USA
  • Bhatti, A.A.; Kamboh, M.A.; Solangi, I.B.; Memon, S. (2013) Synthesis of calix [6] arene based XAD-4 material for the removal of reactive blue 19 from aqueous environments. Journal of Applied Polymer Sciences, 130 (2): 776. doi: 10.1002/app.39214.
  • Kamboh, M.A.; Solangi, I.B.; Sherazi, S.T.H.; Memon, S. (2011) Sorption of congo red onto p-tert-butylcalix [4] arene based silica resin. Journal Iran Chemical Social, 8 (1): 272. doi: 10.1007/BF03246224.
  • Katz, A.; Da Costa, P.; Lam, A.C.P.; Notestein, J.M. (2002) The first single-step immobilization of a calix-[4]-arene onto the surface of silica. Chemical Materials, 14 (8): 3364. doi: 10.1021/cm020082l.
  • Gutsche, C.D.; Dhawan, B.; No, K.H.; Muthukrishnan, R. (1981) Calixarenes. 4. The synthesis, characterization, and properties of the calixarenes from p-tert-butylphenol. Journal of American Chemical Social, 103 (13): 3782. doi: 10.1021/ja00403a028.
  • Shinkai, S.; Araki, K.; Tsubaki, T. (1987) New syntheses of calixarene-p-sulphonates and p-nitrocalixarenes. Journal of the Chemical Society, Perkin Transactions, 1: 2297. doi: 10.1039/p19870002297.
  • Acemioğlu, B.;. (2004) Adsorption of Congo red from aqueous solution onto calcium-rich fly ash. Journal of colloid and interface science, 274 (2): 371. doi: 10.1016/j.jcis.2004.03.019.
  • Senthil, K.P.; Sivaranjanee, R.; Vinothini, U. (2014) Adsorption of dye onto raw and surface modified tamarind seeds: isotherms, process design, kinetics and mechanism. Desalination of Water Treatment, 52 (13–15): 2620. doi: 10.1080/19443994.2013.792016.
  • Memon, G.Z.; Bhanger, M.I.; Akhtar, M. (2008) Adsorption of methyl parathion pesticide from water using watermelon peels as a low cost adsorbent. Chemical Engineering Journal, 138 (1–3): 616. doi: 10.1016/j.cej.2007.09.027.
  • Kamboh, M.A.; Yilmaz, M. (2013) Synthesis of N-methylglucamine functionalized calix[4]arene-based magnetic sporopollenin for the removal of boron from aqueous environment. Desalination, 310 (1): 67. doi: 10.1016/j.desal.2012.10.034.
  • Memon, G.Z.; Bhanger, M.I.; Akhtar, M. (2007) The removal efficiency of chestnut shells for selected pesticides from aqueous solutions. Journal of colloid and interface science, 315 (1): 33. doi: 10.1016/j.jcis.2007.06.037.
  • Suganya, S.; Kumar, P.S. (2018) Kinetic and thermodynamic analysis for the redemption of effluents containing solochrome black T onto powdered activated carbon: a validation of new solid-liquid phase equilibrium model. Journal of Molecular Liquids, 259 (1): 88. doi: 10.1016/j.molliq.2018.03.004F.
  • Langmuir, I.;. (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. Journal American Chemical Social, 40 (9): 1361. doi: 10.1021/ja02242a004.
  • Rashidi, N.H.; Wan Ibrahim, W.A.; Kamboh, M.A.; Sanagi, M.M. (2015) Dispersive graphene-based silica coated magnetic nanoparticles as a new adsorbent for preconcentration of chlorinated pesticides from environmental water. RSC Advancement, 5 (93): 76424. doi: 10.1039/C4RA14244F.
  • Li, C.; Zhong, H.; Wang, S. (2015) Removal of basic dye (methylene blue) from aqueous solution using zeolite synthesized from electrolytic manganese residue. Journal of Industrial Engineering Chemical, 23 (1): 344. doi: 10.1016/j.jiec.2014.08.038.
  • Galhoum, A.A.; Mahfouz, M.G.; Gomaa, N.A. (2015) Cysteine-functionalized chitosan magnetic nano-based particles for the recovery of uranium (VI): uptake kinetics and sorption isotherms. Seperate Sciences Technological, 50 (18): 2776.
  • Gujar, R.B.; Ansari, S.A.; Mohapatra, P.K. (2016) Highly efficient composite polysulfone beads containing a calix [4] arene–monocrown-6 ligand and a room temperature ionic liquid for radiocesium separations: remediation of environmental samples. Industrial Engineering Chemical Researcher, 55 (48): 12460. doi: 10.1021/acs.iecr.6b02662.
  • Dotto, G.L.; Santos, J.M.N.; Rodrigues, I.L. (2015) Adsorption of methylene blue by ultrasonic surface modified chitin. Journal Colloid Interface Science, 446 (1): 133. doi: 10.1016/j.jcis.2015.01.046.
  • Zhang, X.; Shi, L.; Xu, G.; Chen, C. (2013) Synthesis of β-cyclodextrin-calix [4] arene coupling product and its adsorption of basic fuchsin and methylene blue from water. Journal of Inclusion Phenomena Macrocycl Chemical, 75 (1–2): 147. doi: 10.1007/s10847-012-0155-3.
  • Ai, L.; Zhang, C.; Chen, Z. (2011) Removal of methylene blue from aqueous solution by a solvothermal-synthesized graphene/magnetite composite. Journal of Hazardous Materials, 192 (3): 1515. doi: 10.1016/j.jhazmat.2011.06.068.
  • Qi, J.; Li, X.; Zheng, H. (2015) Simultaneous removal of methylene blue and copper (II) ions by photoelectron catalytic oxidation using stannic oxide modified iron (III) oxide composite electrodes. Journal of Hazardous Materials, 293 (1): 105. doi: 10.1016/j.jhazmat.2015.03.059.
  • Dotto, G.L.; Dos Santos, J.M.N.; Rosa, R. (2015) Fixed bed adsorption of methylene blue by ultrasonic surface modified chitin supported on sand. Chemical Engineering Researcher Design, 100 (1): 302. doi: 10.1016/j.cherd.2015.06.003.
  • Ghaedi, M.; Kokhdan, S.N. (2015) Removal of methylene blue from aqueous solution by wood millet carbon optimization using response surface methodology. Spectrochim Acta A Molecular Biomolecular Spectroscopic, 136 (1): 141. doi: 10.1016/j.saa.2014.07.048.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.