753
Views
6
CrossRef citations to date
0
Altmetric
Energy

Towards a cleaner natural gas production: recent developments on purification technologies

, , , , &
Pages 2461-2497 | Received 28 Nov 2017, Accepted 09 Nov 2018, Published online: 26 Dec 2018

References

  • Deppe, G.; Tam, S.; Currier, R.; Young, J.; Anderson, G.; Le, L. et al. 2006 Developments in the SIMTECHE Process-Separation of CO2 from Coal Syngas by Formation of Hydrates. NEXANT, 3(1), National Energy Technology Laboratory: United States. Contract No.: DE-AC26-99FT40248. www.osti.gov/servlets/purl/915435
  • BP. 2016 BP Statistical Review of World Energy; BP p.l.c.: United States. https://biomasspower.gov.in/document/Reports/bp-energy-outlook-2016.pdf
  • ExxonMobil. 2012 The Outlook for Energy: A View to 2040; Exxon Mobil Corporation: United States.
  • Olajire, A.A. 2010 CO2 capture and separation technologies for end-of-pipe applications–a review. Energy, 35 (6): 2610–2628. doi:10.1016/j.energy.2010.02.030.
  • Carroll, J.J. 2010 Acid Gas Injection and Carbon Dioxide Sequestration; John Wiley & Sons: United States.
  • Speight, J.G. 2007 Natural Gas: A Basic Handbook; Gulf Publishing Company: United States.
  • Gold, T. 1985 The origin of natural gas and petroleum, and the prognosis for future supplies. Annual Review of Energy and the Environment, 10 (1): 53–77. doi:10.1146/annurev.eg.10.110185.000413.
  • Ourisson, G.; Albrecht, P.; Rohmer, M. 1984 Microbial origin of fossil fuels. Scientific American, 251 (2). doi:10.1038/scientificamerican0884-44.
  • Lollar, B.S.; Westgate, T.; Ward, J.; Slater, G.; Lacrampe-Couloume, G. 2002 Abiogenic formation of alkanes in the Earth’s crust as a minor source for global hydrocarbon reservoirs. Nature, 416 (6880): 522–524. doi:10.1038/416522a.
  • Rojey, A.; Jaffret, C. 1997 Natural Gas: Production, Processing, Transport; Editions Technip: Paris.
  • Faramawy, S.; Zaki, T.; Sakr, A.-E. 2016 Natural gas origin, composition, and processing: A review. Journal of Natural Gas Science and Engineering, 34: 34–54. doi:10.1016/j.jngse.2016.06.030.
  • Speight, J.G. 2013 Shale Gas Production Processes; Gulf Professional Publishing: United States.
  • Younger, A.; Eng, P. 2004 Natural Gas Processing Principles and Technology-Part 1; Gas Processors Association, Tulsa Oklahoma; Tulsa Oklahoma.
  • Kidnay, A.J.; Parrish, W.R.; McCartney, D.G. 2011 Fundamentals of Natural Gas Processing; CRC Press: United States.
  • Tierling, S.; Jindal, S.; Abascal, R. . 2011 Considerations for the use of carbon dioxide removal membranes in an offshore environment.OTC Brasil 2011, Vol.2 (1030): Offshore Technology Conference, Brazil.
  • Dalane, K.; Dai, Z.; Mogseth, G.; Hillestad, M.; Deng, L. 2017 Potential applications of membrane separation for subsea natural gas processing: A review. Journal of Natural Gas Science and Engineering, 39: 101–117. doi:10.1016/j.jngse.2017.01.023.
  • Amosa, M.; Mohammed, I.; Yaro, S. 2010 Sulphide scavengers in oil and gas industry–a review. North American Free Trade Agreement, 61 (2): 85–98.
  • Xu, C.-G.; Li, X.-S. 2014 Research progress of hydrate-based CO2 separation and capture from gas mixtures. RSC Advances, 4 (35): 18301–18316. doi:10.1039/C4RA00611A.
  • Ma’mun, S.; Dindore, V.Y.; Svendsen, H.F. 2007 Kinetics of the reaction of carbon dioxide with aqueous solutions of 2-((2-aminoethyl) amino) ethanol. Industrial & Engineering Chemistry Research, 46 (2): 385–394. doi:10.1021/ie060383v.
  • Mandal, B.; Guha, M.; Biswas, A.; Bandyopadhyay, S. 2001 Removal of carbon dioxide by absorption in mixed amines: modelling of absorption in aqueous MDEA/MEA and AMP/MEA solutions. Chemical Engineering Science, 56 (21–22): 6217–6224. doi:10.1016/S0009-2509(01)00279-2.
  • Xu, G.; Liang, F.; Yang, Y.; Hu, Y.; Zhang, K.; Liu, W. 2014 An improved CO2 separation and purification system based on cryogenic separation and distillation theory. Energies, 7 (5): 3484–3502. doi:10.3390/en7053484.
  • Mondal, M.K.; Balsora, H.K.; Varshney, P. 2012 Progress and trends in CO2 capture/separation technologies: a review. Energy, 46 (1): 431–441. doi:10.1016/j.energy.2012.08.006.
  • Johnson, J.E.; Homme, J.A.C. 1984 Selexol solvent process reduces lean, high-CO2 natural gas treating costs. Energy Progress, 4 (4): 241–248.
  • Wong, S.; Bioletti, R. 2002 Carbon Dioxide Separation Technologies; Alberta Research Council; Canada.
  • Kovvali, A.S.; Sirkar, K.K. 2002 Carbon dioxide separation with novel solvents as liquid membranes. Industrial & Engineering Chemistry Research, 41 (9): 2287–2295. doi:10.1021/ie010757e.
  • Choi, W.-J.; Seo, J.-B.; Jang, S.-Y.; Jung, J.-H.; Oh, K.-J. 2009 Removal characteristics of CO2 using aqueous MEA/AMP solutions in the absorption and regeneration process. Journal of Environmental Sciences, 21 (7): 907–913. doi:10.1016/S1001-0742(08)62360-8.
  • Rao, A.B.; Rubin, E.S. 2002 A technical, economic, and environmental assessment of amine-based CO2 capture technology for power plant greenhouse gas control. Environmental Science & Technology, 36 (20): 4467–4475.
  • Idem, R.; Wilson, M.; Tontiwachwuthikul, P.; Chakma, A.; Veawab, A.; Aroonwilas, A. et al. 2006 Pilot plant studies of the CO2 capture performance of aqueous MEA and mixed MEA/MDEA solvents at the University of Regina CO2 capture technology development plant and the boundary dam CO2 capture demonstration plant. Industrial & Engineering Chemistry Research, 45 (8): 2414–2420. doi:10.1021/ie050569e.
  • Aaron, D.; Tsouris, C. 2005 Separation of CO2 from flue gas: A review. Separation Science and Technology, 40 (1–3): 321–348. doi:10.1081/SS-200042244.
  • Dutcher, B.; Fan, M.; Russell, A.G. 2015 Amine-based CO2 capture technology development from the beginning of 2013: A review. ACS Applied Materials & Interfaces, 7 (4): 2137–2148. doi:10.1021/am507465f.
  • Kohl, A.L.; Nielsen, R. 1997 Gas Purification; Gulf Professional Publishing; United States.
  • Banks, B.; Bigland-Pritchard, M. 2015 SaskPower’s carbon capture project: what risk? what reward?, pp. 6, canadian centre for policy alternatives, CCPA, Canada.
  • Tavan, Y.; Gholami, H.; Shahhosseini, S. 2016 Some notes on process intensification of amine based gas sweetening process for better temperature distribution in contactor to reduce the amount of amine as a result of corrosion and foaming. Journal of Loss Prevention in the Process Industries, 41: 169–177. doi:10.1016/j.jlp.2016.03.019.
  • Lepaumier, H.; Martin, S.; Picq, D.; Delfort, B.; Carrette, P.-L. 2010 New amines for CO2 capture. Effect of alkyl chain length between amine functions on polyamines degradation. IIIIndustrial and Engineering Chemistry Research, 49 (10): 4553–4560. doi:10.1021/ie902006a.
  • Palla, N.; Jamal, A.; Leppin, D.; Menzel, J.; Morstein, O.; Hooper, M. 2004 Morphysorb Process proves feasible in first commercial plant. Oil and Gas Journal, 07/05: 2004.
  • Gross, M.; Menzel, J.; Tonforf, O. 1998 Acid gas removal for upgrading natural and synthesis gas, 2 (6). Hydrocarbon Engineering.
  • Palla, N.; Lee, A.; Gross, M.; Hooper, H.; Menzel, J.; Leppin, D. 1998 Advancements in Treating Subquality Natural Gas Using N-Formyl Morpholine; Gas Processors Association; Tulsa, OK (United States).
  • Palla, N.R.; Leppin, D.; Zammerilli, A.M. 2003 Technical and Operating Support for Pilot Demonstration of Morphysorb Acid Gas Removal Process; Citeseer, United States.
  • Gielen, D. 2003 CO2 removal in the iron and steel industry. Energy Conversion and Management, 44 (7): 1027–1037. doi:10.1016/S0196-8904(02)00111-5.
  • Xu, J. 2014 CO2 Capture from CO2-rich Natural Gas; Google Patents; United States.
  • Figueroa, J.D.; Fout, T.; Plasynski, S.; McIlvried, H.; Srivastava, R.D. 2008 Advances in CO2 capture technology—the US department of energy’s carbon sequestration program. International Journal of Greenhouse Gas Control, 2 (1): 9–20. doi:10.1016/S1750-5836(07)00094-1.
  • Yu, C.-H.; Huang, C.-H.; Tan, C.-S. 2012 A review of CO2 capture by absorption and adsorption. Aerosol and Air Quality Research., 12 (5): 745–769. doi:10.4209/aaqr.2012.05.0132.
  • Goff, G.S.; Rochelle, G.T. 2006 Oxidation inhibitors for copper and iron catalyzed degradation of monoethanolamine in CO2 capture processes. Industrial & Engineering Chemistry Research, 45 (8): 2513–2521. doi:10.1021/ie0490031.
  • Tobiesen, F.A.; Svendsen, H.F. 2006 Study of a modified amine-based regeneration unit. Industrial & Engineering Chemistry Research, 45 (8): 2489–2496. doi:10.1021/ie050544f.
  • Abu-Zahra, M.R.; Schneiders, L.H.; Niederer, J.P.; Feron, P.H.; Versteeg, G.F. 2007 CO2 capture from power plants: part I. A parametric study of the technical performance based on monoethanolamine. International Journal of Greenhouse Gas Control, 1 (1): 37–46. doi:10.1016/S1750-5836(06)00007-7.
  • Amosa, M.K.; Jami, M.S.; Alkhatib, M.F.R.; Majozi, T. 2016 Technical feasibility study of a low-cost hybrid PAC-UF system for wastewater reclamation and reuse: A focus on feedwater production for low-pressure boilers. Environmental Science and Pollution Research, 23 (22): 22554–22567. doi:10.1007/s11356-016-7390-x.
  • Jami, M.S.; Amosa, M.K.; Alkhatib, M.F.R.; Jimat, D.N.; Muyibi, S.A. 2013 Boiler-feed and process water reclamation from Biotreated Palm Oil Mill Effluent (BPOME): A developmental review. Chemical and Biochemical Engineering Quarterly, 27 (4): 477–489.
  • Amosa, M.K.; Jami, M.S.; Alkhatib, M.F.; Majozi, T. 2016 Studies on pore blocking mechanism and technical feasibility of a hybrid PAC-MF process for reclamation of irrigation water from biotreated POME. Separation Science and Technology, 51 (12): 2047–2061. doi:10.1080/01496395.2016.1192192.
  • Amosa, M.K. 2017 Towards sustainable membrane filtration of palm oil mill effluent: analysis of fouling phenomena from a hybrid PAC-UF process. Applied Water Science, 7 (6): 3365–3375. doi:10.1007/s13201-016-0483-3.
  • Amosa, M.K.; Jami, M.S.; Alkhatib, M.F.R.; Majozi, T.; Abdulkareem, S.A. 2017 Cake compressibility analysis of BPOME from a hybrid adsorption-microfiltration process. Water Environment Research: a Research Publication of the Water Environment Federation, 89 (4): 292–300. doi:10.2175/106143017X14839994522948.
  • Freemantle, M. 2005 October Advanced organic and inorganic materials being developed for separations offer cost benefits for environmental and energy-related processes. Chemical and Engineering News, 3 (2005): 49–57.
  • Shimekit, B.; Mukhtar, H.; Ahmad, F.; Maitra, S. 2009 Ceramic membranes for the separation of carbon dioxide—A review. Transaction of the Indian Ceramic Society, 68 (3): 115–138. doi:10.1080/0371750X.2009.11082166.
  • Baker, R. 2001 Future directions of membrane gas-separation technology. Membrane Technology, 2001 (138): 5–10. doi:10.1016/S0958-2118(01)80332-3.
  • Schlumberger. CYNARA Acid Gas Removal Membrane Systems 2016 [cited 2017 30.April]. http://www.slb.com/~/media/Files/processing-separation/product-sheets/cynara-ps.pdf.
  • Brunetti, A.; Scura, F.; Barbieri, G.; Drioli, E. 2010 Membrane technologies for CO2 separation. Journal of Membrane Science, 359 (1): 115–125. doi:10.1016/j.memsci.2009.11.040.
  • Mulder, J. 2012 Basic Principles of Membrane Technology; Springer Science & Business Media: Berlin.
  • McKee, B. 2002 Solutions for 21st century, zero emissions technologies for fossil fuels, technology status report. In: IEA Working Party on Fossil Fuels; 1–47; International Energy Agency: Paris.
  • Meisen, A.; Shuai, X. 1997 Research and development issues in CO2 capture. Energy Conversion and Management, 38: S37–S42. doi:10.1016/S0196-8904(96)00242-7.
  • Shimekit, B.; Mukhtar, H. 2012 Natural Gas Purification Technologies-Major Advances for CO2 Separation and Future Directions; INTECH Open Access Publisher Croatia; Europe.
  • Kim, S.; Chen, L.; Johnson, J.K.; Marand, E. 2007 Polysulfone and functionalized carbon nanotube mixed matrix membranes for gas separation: Theory and experiment. Journal of Membrane Science & Technology, 294 (1): 147–158. doi:10.1016/j.memsci.2007.02.028.
  • Vu, D.Q.; Koros, W.J.; Miller, S.J. 2003 Mixed matrix membranes using carbon molecular sieves: I preparation and experimental results. Journal of Membrane Science, 211 (2): 311–334. doi:10.1016/S0376-7388(02)00429-5.
  • Anson, M.; Marchese, J.; Garis, E.; Ochoa, N.; Pagliero, C. 2004 ABS copolymer-activated carbon mixed matrix membranes for CO2/CH4 separation. Journal of Membrane Science & Technology, 243 (1): 19–28. doi:10.1016/j.memsci.2004.05.008.
  • Li, Y.; Chung, T.S.; Kulprathipanja, S. 2007 Novel Ag+‐zeolite/polymer mixed matrix membranes with a high CO2/CH4 selectivity. AIChE Journal. American Institute of Chemical Engineers, 53 (3): 610–616. doi:10.1002/aic.11109.
  • Tabe-Mohammadi, A. 1999 A review of the applications of membrane separation technology in natural gas treatment. Separation Science and Technology, 34 (10): 2095–2111. doi:10.1081/SS-100100758.
  • Gupta, M.; Coyle, I.; Thambimuthu, K.. 2003 CO2 capture technologies and opportunities in Canada. In 1st Canadian CC&S Technology Roadmap Workshop, pp. 14–15; Canadian CC&S: Calgary.
  • Baker, R.W.; Lokhandwala, K. 2008 Natural gas processing with membranes: an overview. Industrial & Engineering Chemistry Research, 47 (7): 2109–2121. doi:10.1021/ie071083w.
  • Bernardo, P.; Drioli, E.; Golemme, G. 2009 Membrane gas separation: a review/state of the art. Industrial & Engineering Chemistry Research, 48 (10): 4638–4663. doi:10.1021/ie8019032.
  • Adewole, J.; Ahmad, A.; Ismail, S.; Leo, C. 2013 Current challenges in membrane separation of CO2 from natural gas: A review. International Journal of Greenhouse Gas Control, 17: 46–65. doi:10.1016/j.ijggc.2013.04.012.
  • Pixton, M.; Paul, D. 1995 Gas transport properties of adamantane-based polysulfones. Polymer, 36 (16): 3165–3172. doi:10.1016/0032-3861(95)97880-O.
  • Robeson, L.M. 2008 The upper bound revisited. Journal of Membrane Science & Technology, 320 (1): 390–400. doi:10.1016/j.memsci.2008.04.030.
  • Xiao, Y.; Low, B.T.; Hosseini, S.S.; Chung, T.S.; Paul, D.R. 2009 The strategies of molecular architecture and modification of polyimide-based membranes for CO2 removal from natural gas - A review. Progress in Polymer Science, 34 (6): 561–580. doi:10.1016/j.progpolymsci.2008.12.004.
  • Askari, M.; Xiao, Y.; Li, P.; Chung, T.-S. 2012 Natural gas purification and olefin/paraffin separation using cross-linkable 6FDA-Durene/DABA co-polyimides grafted with α, β, and γ-cyclodextrin. Journal of Membrane Science & Technology, 390: 141–151. doi:10.1016/j.memsci.2011.11.030.
  • Kim, S.; Han, S.H.; Lee, Y.M. 2012 Thermally rearranged (TR) polybenzoxazole hollow fiber membranes for CO2 capture. Journal of Membrane Science & Technology, 403: 169–178. doi:10.1016/j.memsci.2012.02.041.
  • Choi, J.I.; Jung, C.H.; Han, S.H.; Park, H.B.; Lee, Y.M. 2010 Thermally rearranged (TR) poly (benzoxazole-co-pyrrolone) membranes tuned for high gas permeability and selectivity. Journal of Membrane Science & Technology, 349 (1): 358–368. doi:10.1016/j.memsci.2009.11.068.
  • Han, S.H.; Lee, J.E.; Lee, K.-J.; Park, H.B.; Lee, Y.M. 2010 Highly gas permeable and microporous polybenzimidazole membrane by thermal rearrangement. Journal of Membrane Science & Technology, 357 (1): 143–151. doi:10.1016/j.memsci.2010.04.013.
  • Budd, P.M.; McKeown, N.B.; Fritsch, D.; Yampolskii, Y.; Shantarovich, V. 2010 Gas permeation parameters and other physicochemical properties of a polymer of intrinsic microporosity (PIM‐1). Membranes for Gas Separation: (2) 29–42.
  • Budd, P.M.; McKeown, N.B.; Ghanem, B.S.; Msayib, K.J.; Fritsch, D.; Starannikova, L. et al. 2008 Gas permeation parameters and other physicochemical properties of a polymer of intrinsic microporosity: polybenzodioxane PIM-1. Journal of Membrane Science & Technology, 325 (2): 851–860. doi:10.1016/j.memsci.2008.09.010.
  • Audus, H. editor Leading options for the capture of CO2 at power stations. Proceedings of the Fifth International Conference on Greenhouse Gas Control Technologies, Cairns, Australia; 2000: Citeseer.
  • Gielen, D. editor The energy policy consequences of future CO2 capture and sequestration technologies. Proceedings of the 2nd annual conference on carbon sequestration, Alexandria, VA; 2003: Citeseer.
  • Leung, D.Y.; Caramanna, G.; Maroto-Valer, M.M. 2014 An overview of current status of carbon dioxide capture and storage technologies. Renewable & Sustainable Energy Reviews, 39: 426–443. doi:10.1016/j.rser.2014.07.093.
  • AirLiquide. 2016 Model 5240 Natural Gas Membrane; Product Fact Sheet: United States.
  • UOP H. 2011 UOP SeparexTM membrane systems. In: Efficient Bulk Removal of Acid Gases and Water, pp. 2; Honeywell Company: United States.
  • NATCO. 2016 Cynara CO2 membrane separation solutions. In: Acid Gas CO2 Separation Systems with Cynara Membranes, 3017.A1; Schlumberger: United States.
  • Amosa, M.K.; Jami, M.S.; Alkhatib, M.F.R. 2016 Electrostatic biosorption of COD, Mn and H2S on EFB-based activated carbon produced through steam pyrolysis: an analysis based on surface chemistry, equilibria and kinetics. Waste Biomass Valorization, 7 (1): 109–124. doi:10.1007/s12649-015-9435-7.
  • Ruthven, D.M. 1984 Principles of Adsorption and Adsorption Processes; John Wiley & Sons: Canada.
  • Granite, E.J.; O’Brien, T. 2005 Review of novel methods for carbon dioxide separation from flue and fuel gases. Fuel Processing Technology, 86 (14): 1423–1434. doi:10.1016/j.fuproc.2005.01.001.
  • Webley, P.A. 2014 Adsorption technology for CO2 separation and capture: a perspective. Adsorption, 20 (2): 225–231. doi:10.1007/s10450-014-9603-2.
  • Grande, C.A. 2012 Advances in pressure swing adsorption for gas separation. ISRN Chem Eng, 2012: 13. doi:10.5402/2012/982934.
  • Wang, J.; Huang, L.; Yang, R.; Zhang, Z.; Wu, J.; Gao, Y. et al. 2014 Recent advances in solid sorbents for CO 2 capture and new development trends. Energy & Environmental Science, 7 (11): 3478–3518.
  • Ritter, J.; Ebner, A. 2007 Carbon dioxide separation technology: R&D needs for the chemical and petrochemical industries. The Chemical Indian Vision, 2020: 287–295.
  • Knowles, G.; Beyton, V.; Chaffee, A. 2006 New approaches for the preparation of aminopropyl-functionalized silicas as CO2 adsorbents. American Chemical Society, Division of Fuel Chemistry Preprint, 51: 102e3.
  • Abdulsalam, J.; Mulopo, J.; Oboirien, B.O. 2017 Development and Optimization of a Sustainable Natural Gas Storage System Using Activated Carbon Derived from Coal Discard; University of Witwatersrand; South Africa.
  • Li, H.; Eddaoudi, M.; O’Keeffe, M.; Yaghi, O.M. 1999 Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature, 402 (6759): 276–279. doi:10.1038/46248.
  • Rufford, T.E.; Smart, S.; Watson, G.C.; Graham, B.; Boxall, J.; Da Costa, J.D. et al. 2012 The removal of CO2 and N2 from natural gas: a review of conventional and emerging process technologies. Journal of Petroleum Science and Engineering, 94: 123–154.doi:10.1016/j.petrol.2012.06.016.
  • Eddaoudi, M.; Moler, D.B.; Li, H.; Chen, B.; Reineke, T.M.; O’keeffe, M. et al. 2001 Modular chemistry: secondary building units as a basis for the design of highly porous and robust metal− organic carboxylate frameworks. Accounts of Chemical Research, 34 (4): 319–330.
  • Llewellyn, P.L.; Bourrelly, S.; Serre, C.; Vimont, A.; Daturi, M.; Hamon, L. et al. 2008 High Uptakes of CO2 and CH4 in mesoporous metal organic frameworks MIL-100 and MIL-101. Langmuir: the ACS Journal of Surfaces and Colloids, 24 (14): 7245–7250. doi:10.1021/la800227x.
  • Liu, J.; Thallapally, P.K.; McGrail, B.P.; Brown, D.R.; Liu, J. 2012 Progress in adsorption-based CO2 capture by metal–organic frameworks. Chemical Society Reviews, 41 (6): 2308–2322. doi:10.1039/c1cs15221a.
  • Tuinier, M.; van Sint Annaland, M.; Kramer, G.; Kuipers, J. 2010 Cryogenic CO2 capture using dynamically operated packed beds. Chemical Engineering Science, 65 (1): 114–119. doi:10.1016/j.ces.2009.01.055.
  • Lemmon, E.; Huber, M.; McLinden, M. 2007 REFPROP: reference fluid thermodynamic and transport properties. NIST Standard Reference Database, 23 (1).
  • Berstad, D.; Nekså, P.; Anantharaman, R. 2012 Low-temperature CO2 removal from natural gas. Energy Procedia, 26: 41–48. doi:10.1016/j.egypro.2012.06.008.
  • Holmes, A.S.; Ryan, J.M. 1982 Cryogenic Distillative Separation of Acid Gases from Methane; Google Patents; United States.
  • Parker, P.M.E.; Northrop, S.; Valencia, J.A.; Foglesong, R.E.; Duncan, W.T. 2011 CO2 management at Exxonmobil’s LaBarge field, Wyoming, USA. Energy Procedia, 4: 5455–5470. doi:10.1016/j.egypro.2011.02.531.
  • Northrop, P.S.; Valencia, J.A. 2009 The CFZ™ process: a cryogenic method for handling high-CO2 and H2S gas reserves and facilitating geosequestration of CO2 and acid gases. Energy Procedia, 1 (1): 171–177. doi:10.1016/j.egypro.2009.01.025.
  • Willems, G.P.; Golombok, M.; Tesselaar, G.; Brouwers, J.J.H. 2010 Condensed rotational separation of CO2 from natural gas. AIChE Journal. American Institute of Chemical Engineers, 56 (1): 150–159.
  • Brouwers, J.J.H.; van Wissen, R.; Golombok, M. 2006 Novel centrifugal process removes gas contaminants. Oil and Gas Journal, 104 (42): 37.
  • Clodic, D.; El, H.R.; Younes, M.; Bill, A.; Casier, F., editors. CO2 Capture by anti-sublimation Thermo-economic process evaluation. 4th Annual Conference on Carbon Capture and Sequestration; 2005: National Energy Technology Laboratory Alexandria^ eVA VA.
  • Peters, L.; Hussain, A.; Follmann, M.; Melin, T.; Hägg, M.-B. 2011 CO 2 removal from natural gas by employing amine absorption and membrane technology—a technical and economical analysis. Chemical Engineering Journal (Lausanne, Switzerland: 1996), 172 (2): 952–960. doi:10.1016/j.cej.2011.07.007.
  • Rojey, A.; Deschamps, A.; Grehier, A.; Robert, E. 1990 Process for Separation of the Constituents of a Mixture in the Gas Phase Using a Composite Membrane; Google Patents; United States.
  • Igci, Y.; Andrews, A.T.; Sundaresan, S.; Pannala, S.; O’Brien, T. 2008 Filtered two‐fluid models for fluidized gas‐particle suspensions. AIChE Journal. American Institute of Chemical Engineers, 54 (6): 1431–1448. doi:10.1002/aic.11481.
  • Khan, F.; Krishnamoorthi, V.; Mahmud, T. 2011 Modelling reactive absorption of CO2 in packed columns for post-combustion carbon capture applications. Chemical Engineering Research and Design, 89 (9): 1600–1608. doi:10.1016/j.cherd.2010.09.020.
  • Surovtseva, D.; Amin, R.; Barifcani, A. 2011 Design and operation of pilot plant for CO2 capture from IGCC flue gases by combined cryogenic and hydrate method. Chemical Engineering Research and Design, 89 (9): 1752–1757. doi:10.1016/j.cherd.2010.08.016.
  • Song, C.F.; Kitamura, Y.; Li, S.H. 2012 Evaluation of Stirling cooler system for cryogenic CO2 capture. Applied Energy, 98: 491–501. doi:10.1016/j.apenergy.2012.04.013.
  • Pan, X.; Clodic, D.; Toubassy, J. 2013 Techno‐economic evaluation of cryogenic CO2 capture: A comparison with absorption and membrane technology. Greenhouse Gases: Science and Technology, 3 (1): 8–20. doi:10.1002/ghg.1313.
  • Ganapathy, H.; Shooshtari, A.; Dessiatoun, S.; Alshehhi, M.; Ohadi, M. 2014 Fluid flow and mass transfer characteristics of enhanced CO2 capture in a minichannel reactor. Applied Energy, 119: 43–56. doi:10.1016/j.apenergy.2013.12.047.
  • Sarkar, A.; Pan, W.; Suh, D.; Huckaby, E.D.; Sun, X. 2014 Multiphase flow simulations of a moving fluidized bed regenerator in a carbon capture unit. Powder Technology, 265: 35–46. doi:10.1016/j.powtec.2014.01.031.
  • Bara, J.; Camper, D.; Gabriel, C.; Friedman, B.; Israel, A. 2010 Gas Processing with Ionic Liquid-Amine Solvents; URS Corporation; Denver, Colorado.
  • Burr, B.; Lyddon, L., editors. A comparison of physical solvents for acid gas removal. 87th Annual Gas Processors Association Convention, Grapevine, Texas, March; 2008.
  • Echt, W.I.; Singh, M., editors. Integration of membranes into natural gas process schemes. 87 th Annual Convention Proceedings, Gas Processors Association; Texas, 2008.
  • Bhide, B.; Voskericyan, A.; Stern, S. 1998 Hybrid processes for the removal of acid gases from natural gas. Journal of Membrane Science & Technology, 140 (1): 27–49. doi:10.1016/S0376-7388(97)00257-3.
  • Falk-Pedersen, O.; Dannstrom, H.; Gronvold, M.; Stuksrud, D.; Ronning, O., editors. Gas treatment using membrane gas/liquid contactors. Proceedings of the Fifth International Conference on Greenhouse Gas Control Technologies; 2000: Csiro Publishing Collingwood, Australia.
  • Blizzard, G.; Parro, D. 2005 Mallet gas processing facility uses membranes to efficiently separate CO2. Oil and Gas Journal, 103 (14): 6.
  • Rajani, J. 2004 Treating technologies of shell global solutions for natural gas and refinery gas streams., pp. 2–7; Oil, Gas and Petrochemicals Congress: Iran.
  • Kohl, A.; Riesenfeld, F. 1997 Gas Purification; Gulf Pub; Co, Houston, USA.
  • Jayakumar, K.; Panda, R.C.; Panday, A. A Review: State-of-the-Art LPG Sweetening Process.
  • Ghanbarabadi, H.; Khoshandam, B.; Wood, D.A. 2018 Simulation of CO 2 removal from ethane with Sulfinol-M+ AMP solvent instead of DEA solvent in the South Pars phases 9 and 10 gas processing facility. Petroleum, 2018: 1–12. doi:10.1016/j.petlm.2018.06.004
  • Nejat, T.; Movasati, A.; Wood, D.A.; Ghanbarabadi, H. 2018 Simulated exergy and energy performance comparison of physical–chemical and chemical solvents in a sour gas treatment plant. Chemical Engineering Research and Design, 133: 40–54. doi:10.1016/j.cherd.2018.02.040.
  • Hao, J.; Rice, P.; Stern, S. 2002 Upgrading low-quality natural gas with H2S-and CO2-selective polymer membranes: part I. Process design and economics of membrane stages without recycle streams. Journal of Membrane Science & Technology, 209 (1): 177–206. doi:10.1016/S0376-7388(02)00318-6.
  • Palomeque-Santiago, J.; Guzmán, J.; Zuñiga-Mendiola, A. 2016 Simulation of the natural gas purification process with membrane technology. Technical and economic aspects. Revista Mexicana de Ingeniería Química, 15 (2): 611–624.
  • Echt, W. editor Hybrid systems-combining technologies leads to more efficient gas conditioning. Proceedings of the Laurance Reid gas conditioning conference; Oklahoma 2002. doi:10.1044/1059-0889(2002/er01)
  • Hazrati, N.; Abdouss, M.; Vahid, A.; Beigi, A.M.; Mohammadalizadeh, A. 2014 Removal of H 2 S from crude oil via stripping followed by adsorption using ZnO/MCM-41 and optimization of parameters. International Journal of Science, Environment and Technology, 11 (4): 997–1006. doi:10.1007/s13762-013-0465-z.
  • Pellegrini, L.; Langè, S.; Mikus, O.; Picutti, B.; Vergani, P.; Franzoni, G. et al. 2015 A new cryogenic technology for natural gas sweetening. Sour Oil & Gas Advanced Technology SOGAT 2015, pp. 697–706, Abu Dhabi.
  • Shiflett, M.B.; Drew, D.W.; Cantini, R.A.; Yokozeki, A. 2010 Carbon dioxide capture using ionic liquid 1-butyl-3-methylimidazolium acetate. Energy & Fuels: an American Chemical Society Journal, 24 (10): 5781–5789. doi:10.1021/ef100868a.
  • Wappel, D.; Gronald, G.; Kalb, R.; Draxler, J. 2010 Ionic liquids for post-combustion CO2 absorption. International Journal of Greenhouse Gas Control, 4 (3): 486–494. doi:10.1016/j.ijggc.2009.11.012.
  • Linga, P.; Kumar, R.; Englezos, P. 2007 The clathrate hydrate process for post and pre-combustion capture of carbon dioxide. Journal of Hazardous Materials, 149 (3): 625–629. doi:10.1016/j.jhazmat.2007.06.086.
  • Nohra, M.; Woo, T.K.; Alavi, S.; Ripmeester, J.A. 2012 Molecular dynamics Gibbs free energy calculations for CO2 capture and storage in structure I clathrate hydrates in the presence of SO2, CH4, N2, and H2S impurities. The Journal of Chemical Thermodynamics, 44 (1): 5–12. doi:10.1016/j.jct.2011.08.025.
  • Zhang, J.; Kutnyakov, I.; Koech, P.K.; Zwoster, A.; Howard, C.; Zheng, F. et al. 2013 CO2-binding-organic-liquids-enhanced CO2 capture using polarity-swing-assisted regeneration. Energy Procedia, 37: 285–291.doi:10.1016/j.egypro.2013.05.113.
  • Ghandi, K. 2014 A review of ionic liquids, their limits and applications. Current Opinion in Green and Sustainable Chemistry, doi:10.4236/gsc.2014.41008.
  • Zhao, H. 2006 Innovative applications of ionic liquids as “green” engineering liquids. Chemical Engineering Communications, 193 (12): 1660–1677. doi:10.1080/00986440600586537.
  • Hasib-ur-Rahman, M.; Siaj, M.; Larachi, F. 2010 Ionic liquids for CO2 capture—development and progress. Chemical Engineering and Processing-Process Intensification, 49 (4): 313–322. doi:10.1016/j.cep.2010.03.008.
  • Ramdin, M.; de Loos, T.W.; Vlugt, T.J. 2012 State-of-the-art of CO2 capture with ionic liquids. Industrial & Engineering Chemistry Research, 51 (24): 8149–8177. doi:10.1021/ie3003705.
  • Rogers, R.D.; Seddon, K.R. 2003 Ionic liquids–solvents of the future? Science, 302 (5646): 792–793. doi:10.1126/science.1090313.
  • Wishart, J.F. 2009 Energy applications of ionic liquids. Energy & Environmental Science, 2 (9): 956–961. doi:10.1039/b906273d.
  • Althuluth, M.A.M. 2014 Natural Gas Sweetening Using Ionic Liquids; The Petroleum Institute; Abu Dhabi.
  • Huddleston, J.G.; Visser, A.E.; Reichert, W.M.; Willauer, H.D.; Broker, G.A.; Rogers, R.D. 2001 Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chemistry: an International Journal and Green Chemistry Resource: GC, 3 (4): 156–164. doi:10.1039/b103275p.
  • Raeissi, S.; Florusse, L.; Peters, C. 2011 Hydrogen solubilities in the IUPAC ionic liquid 1-hexyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide. Journal of Chemical and Engineering Data, 56 (4): 1105–1107. doi:10.1021/je101060k.
  • Shirota, H.; Castner, E.W. 2005 Why are viscosities lower for ionic liquids with− CH2Si (CH3) 3 vs− CH2C (CH3) 3 substitutions on the imidazolium cations? The Journal of Physical Chemistry. B, 109 (46): 21576–21585. doi:10.1021/jp053930j.
  • Althuluth, M.A. 2014 Natural Gas Sweetening Using Ionic Liquids; The Petroleum Institute; Abu Dhabi.
  • Seddon, K.R.; Stark, A.; Torres, M.-J. 2000 Influence of chloride, water, and organic solvents on the physical properties of ionic liquids. Pure and Applied Chemistry. Chimie Pure Et Appliquee, 72 (12): 2275–2287. doi:10.1351/pac200072122275.
  • Tolstoguzov, A.; Bardi, U.; Chenakin, S. 2008 Study of the corrosion of metal alloys interacting with an ionic liquid. Bulletin of the Russian Academy of Sciences: Physics, 72 (5): 605–608. doi:10.3103/S1062873808050080.
  • Zulfiqar, S.; Sarwar, M.I.; Mecerreyes, D. 2015 Polymeric ionic liquids for CO2 capture and separation: potential, progress and challenges. Polymer Chemistry, 6 (36): 6435–6451. doi:10.1039/C5PY00842E.
  • Mercy, M.; de Leeuw, N.H.; Bell, R.G. 2016 Mechanisms of CO2 capture in ionic liquids: a computational perspective. Faraday Discussions, 192: 479–492. doi:10.1039/c6fd00081a.
  • Cadena, C.; Anthony, J.L.; Shah, J.K.; Morrow, T.I.; Brennecke, J.F.; Maginn, E.J. 2004 Why is CO2 so soluble in imidazolium-based ionic liquids? Journal of the American Chemical Society, 126 (16): 5300–5308. doi:10.1021/ja039615x.
  • Mumford, K.A.; Wu, Y.; Smith, K.H.; Stevens, G.W. 2015 Review of solvent based carbon-dioxide capture technologies. Frontiers of Chemical Science and Engineering., 9 (2): 125–141. doi:10.1007/s11705-015-1514-6.
  • MacDowell, N.; Florin, N.; Buchard, A.; Hallett, J.; Galindo, A.; Jackson, G. et al. 2010 An overview of CO2 capture technologies. Energy & Environmental Science, 3 (11): 1645–1669. doi:10.1039/c004106h.
  • Karadas, F.; Atilhan, M.; Aparicio, S. 2010 Review on the use of ionic liquids (ILs) as alternative fluids for CO2 capture and natural gas sweetening. Energy & Fuels: an American Chemical Society Journal, 24 (11): 5817–5828. doi:10.1021/ef1011337.
  • Bara, J.E.; Gabriel, C.J.; Carlisle, T.K.; Camper, D.E.; Finotello, A.; Gin, D.L. et al. 2009 Gas separations in fluoroalkyl-functionalized room-temperature ionic liquids using supported liquid membranes. Chemical Engineering Journal (Lausanne, Switzerland: 1996), 147 (1): 43–50. doi:10.1016/j.cej.2008.11.021.
  • Adibi, M.; Barghi, S.; Rashtchian, D. 2011 Predictive models for permeability and diffusivity of CH4 through imidazolium-based supported ionic liquid membranes. Journal of Membrane Science & Technology, 371 (1–2): 127–133. doi:10.1016/j.memsci.2011.01.024.
  • Bara, J.E.; Lessmann, S.; Gabriel, C.J.; Hatakeyama, E.S.; Noble, R.D.; Gin, D.L. 2007 Synthesis and performance of polymerizable room-temperature ionic liquids as gas separation membranes. Industrial & Engineering Chemistry Research, 46 (16): 5397–5404. doi:10.1021/ie0704492.
  • Barghi, S.; Adibi, M.; Rashtchian, D. 2010 An experimental study on permeability, diffusivity, and selectivity of CO2 and CH4 through [bmim][PF6] ionic liquid supported on an alumina membrane: investigation of temperature fluctuations effects. Journal of Membrane Science & Technology, 362 (1–2): 346–352. doi:10.1016/j.memsci.2010.06.047.
  • Gonzalez-Miquel, M.; Palomar, J.; Omar, S.; Rodriguez, F. 2011 CO2/N2 selectivity prediction in supported ionic liquid membranes (SILMs) by COSMO-RS. Industrial & Engineering Chemistry Research, 50 (9): 5739–5748. doi:10.1021/ie102450x.
  • Baltus, R.E.; Culbertson, B.H.; Dai, S.; Luo, H.; DePaoli, D.W. 2004 Low-pressure solubility of carbon dioxide in room-temperature ionic liquids measured with a quartz crystal microbalance. The Journal of Physical Chemistry. B, 108 (2): 721–727. doi:10.1021/jp036051a.
  • Tang, J.; Sun, W.; Tang, H.; Radosz, M.; Shen, Y. 2005 Enhanced CO2 absorption of poly (ionic liquid) s. Macromolecules, 38 (6): 2037–2039. doi:10.1021/ma047574z.
  • Zhang, X.; Zhang, X.; Dong, H.; Zhao, Z.; Zhang, S.; Huang, Y. 2012 Carbon capture with ionic liquids: overview and progress. Energy & Environmental Science, 5 (5): 6668–6681. doi:10.1039/c2ee21152a.
  • Smiglak, M.; Reichert, W.M.; Holbrey, J.D.; Wilkes, J.S.; Sun, L.; Thrasher, J.S. et al. 2006 Combustible ionic liquids by design: is laboratory safety another ionic liquid myth?. Chemical Communications (24): 2554–2556. doi:10.1039/b602086k.
  • Liu, W.; Cheng, L.; Zhang, Y.; Wang, H.; Yu, M. 2008 The physical properties of aqueous solution of room-temperature ionic liquids based on imidazolium: database and evaluation. Journal of Molecular Liquids, 140 (1): 68–72. doi:10.1016/j.molliq.2008.01.008.
  • Sánchez, L.G.; Meindersma, G.; De Haan, A. 2011 Kinetics of absorption of CO2 in amino-functionalized ionic liquids. Chemical Engineering Journal (Lausanne, Switzerland: 1996), 166 (3): 1104–1115. doi:10.1016/j.cej.2010.12.016.
  • Camper, D.; Bara, J.E.; Gin, D.L.; Noble, R.D. 2008 Room-temperature ionic liquid− amine solutions: tunable solvents for efficient and reversible capture of CO2. Industrial & Engineering Chemistry Research, 47 (21): 8496–8498. doi:10.1021/ie801002m.
  • Kolbitsch, P.; Bolhar-Nordenkampf, J.; PröLl, T.; Hofbauer, H. 2009 Comparison of two Ni-based oxygen carriers for chemical looping combustion of natural gas in 140 kW continuous looping operation. Industrial & Engineering Chemistry Research, 48 (11): 5542–5547. doi:10.1021/ie900123v.
  • Goodrich, B.F.; de la Fuente, J.C.; Gurkan, B.E.; Lopez, Z.K.; Price, E.A.; Huang, Y. et al. 2011 Effect of water and temperature on absorption of CO2 by amine-functionalized anion-tethered ionic liquids. The Journal of Physical Chemistry. B, 115 (29): 9140–9150. doi:10.1021/jp2015534.
  • Tian, X. PhD Dissertation, University of Twente, The Netherlands, 2011.
  • Ahmady, A.; Hashim, M.A.; Aroua, M.K. 2011 Absorption of carbon dioxide in the aqueous mixtures of methyldiethanolamine with three types of imidazolium-based ionic liquids. Fluid Phase Equilibria, 309 (1): 76–82. doi:10.1016/j.fluid.2011.06.029.
  • Huang, Q.; Li, Y.; Jin, X.; Zhao, D.; Chen, G.Z. 2011 Chloride ion enhanced thermal stability of carbon dioxide captured by monoethanolamine in hydroxyl imidazolium based ionic liquids. Energy & Environmental Science, 4 (6): 2125–2133. doi:10.1039/c0ee00748j.
  • Zhao, Y.; Zhang, X.; Zeng, S.; Zhou, Q.; Dong, H.; Tian, X. et al. 2010 Density, viscosity, and performances of carbon dioxide capture in 16 absorbents of amine+ ionic liquid+ H2O, ionic liquid+ H2O, and amine+ H2O systems. Journal of Chemical and Engineering Data, 55 (9): 3513–3519. doi:10.1021/je100078w.
  • Zhao, Y.; Zhang, X.; Dong, H.; Zhen, Y.; Li, G.; Zeng, S. et al. 2011 Solubilities of gases in novel alcamines ionic liquid 2-[2-hydroxyethyl (methyl) amino] ethanol chloride. Fluid Phase Equilibria, 302 (1): 60–64. doi:10.1016/j.fluid.2010.08.017.
  • Taib, M.M.; Murugesan, T. 2012 Solubilities of CO2 in aqueous solutions of ionic liquids (ILs) and monoethanolamine (MEA) at pressures from 100 to 1600 kPa. Chemical Engineering Journal (Lausanne, Switzerland: 1996), 181: 56–62. doi:10.1016/j.cej.2011.09.048.
  • Shen, K.P.; Li, M.H. 1992 Solubility of carbon dioxide in aqueous mixtures of monoethanolamine with methyldiethanolamine. Journal of Chemical and Engineering Data, 37 (1): 96–100.
  • Kim, J.E.; Lim, J.S.; Kang, J.W. 2011 Measurement and correlation of solubility of carbon dioxide in 1-alkyl-3-methylimidazolium hexafluorophosphate ionic liquids. Fluid Phase Equilibria, 306 (2): 251–255. doi:10.1016/j.fluid.2011.04.017.
  • Scovazzo, P.; Kieft, J.; Finan, D.A.; Koval, C.; DuBois, D.; Noble, R. 2004 Gas separations using non-hexafluorophosphate [PF6]− anion supported ionic liquid membranes. Journal of Membrane Science & Technology, 238 (1–2): 57–63. doi:10.1016/j.memsci.2004.02.033.
  • Hu, X.; Tang, J.; Blasig, A.; Shen, Y.; Radosz, M. 2006 CO2 permeability, diffusivity and solubility in polyethylene glycol-grafted polyionic membranes and their CO2 selectivity relative to methane and nitrogen. Journal of Membrane Science & Technology, 281 (1–2): 130–138. doi:10.1016/j.memsci.2006.03.030.
  • Bonhote, P.; Dias, A.-P.; Papageorgiou, N.; Kalyanasundaram, K.; Grätzel, M. 1996 Hydrophobic, highly conductive ambient-temperature molten salts. Inorganic Chemistry, 35 (5): 1168–1178.
  • Bara, J.E.; Camper, D.E.; Gin, D.L.; Noble, R.D. 2009 Room-temperature ionic liquids and composite materials: platform technologies for CO2 capture. Accounts of Chemical Research, 43 (1): 152–159. doi:10.1021/ar9001747.
  • Park, Y.-I.; Kim, B.-S.; Byun, Y.-H.; Lee, S.-H.; Lee, E.-W.; Lee, J.-M. 2009 Preparation of supported ionic liquid membranes (SILMs) for the removal of acidic gases from crude natural gas. Desalination, 236 (1–3): 342–348. doi:10.1016/j.desal.2007.10.085.
  • Tang, J.; Tang, H.; Sun, W.; Radosz, M.; Shen, Y. 2005 Poly (ionic liquid) s as new materials for CO2 absorption. Journal of Polymer Science. Part A, Polymer Chemistry, 43 (22): 5477–5489. doi:10.1002/pola.21031.
  • D’Alessandro, D.M.; Smit, B.; Long, J.R. 2010 Carbon dioxide capture: prospects for new materials. Angewandte Chemie International Edition, 49 (35): 6058–6082. doi:10.1002/anie.201000431.
  • Kenarsari, S.D.; Yang, D.; Jiang, G.; Zhang, S.; Wang, J.; Russell, A.G. et al. 2013 Review of recent advances in carbon dioxide separation and capture. RSC Advances, 3 (45): 22739–22773. doi:10.1039/c3ra43965h.
  • Linga, P.; Kumar, R.; Englezos, P. 2007 Gas hydrate formation from hydrogen/carbon dioxide and nitrogen/carbon dioxide gas mixtures. Chemical Engineering Science, 62 (16): 4268–4276.
  • Tajima, H.; Yamasaki, A.; Kiyono, F. 2004 Continuous formation of CO2 hydrate via a Kenics-type static mixer. Energy & Fuels: an American Chemical Society Journal, 18 (5): 1451–1456. doi:10.1021/ef034087w.
  • Englezos, P.; Lee, J.D. 2005 Gas hydrates: A cleaner source of energy and opportunity for innovative technologies. The Korean Journal of Chemical Engineering, 22 (5): 671–681. doi:10.1007/BF02705781.
  • Babu, P.; Linga, P.; Kumar, R.; Englezos, P. 2015 A review of the hydrate based gas separation (HBGS) process for carbon dioxide pre-combustion capture. Energy, 85: 261–279. doi:10.1016/j.energy.2015.03.103.
  • Zhao, J.; Zhao, Y.; Liang, W. 2016 Hydrate‐based gas separation for methane recovery from coal mine gas using tetrahydrofuran. Energy Technology, 4 (7): 864–869. doi:10.1002/ente.201600047.
  • Sloan, E.D.; Koh, C.A. 2008 Clathrate Hydrates of Natural Gases, Third 119; Chem Ind: New York
  • Walsh, M.R.; Rainey, J.D.; Lafond, P.G.; Park, D.-H.; Beckham, G.T.; Jones, M.D. et al. 2011 The cages, dynamics, and structuring of incipient methane clathrate hydrates. Physical Chemistry Chemical Physics: PCCP, 13 (44): 19951–19959. doi:10.1039/c1cp21899a.
  • Lee, H.; Kang, S.-P. 2003 Method for Separation of Gas Constituents Employing Hydrate Promoter; Google Patents; United States.
  • Kumar, R.; Linga, P.; Englezos, P. 2006 Pre and post combustion capture of carbon dioxide via hydrate formation. In: EIC Climate Change Technology; 2006 IEEE (pp. 1–7), IEEE.
  • Duc, N.H.; Chauvy, F.; Herri, J.-M. 2007 CO2 capture by hydrate crystallization–a potential solution for gas emission of steelmaking industry. Energy Conversion and Management, 48 (4): 1313–1322. doi:10.1016/j.enconman.2006.09.024.
  • Kang, S.-P.; Lee, H.; Lee, C.-S.; Sung, W.-M. 2001 Hydrate phase equilibria of the guest mixtures containing CO2, N2 and tetrahydrofuran. Fluid Phase Equilibria, 185 (1): 101–109. doi:10.1016/S0378-3812(01)00460-5.
  • Eslamimanesh, A.; Mohammadi, A.H.; Richon, D.; Naidoo, P.; Ramjugernath, D. 2012 Application of gas hydrate formation in separation processes: a review of experimental studies. The Journal of Chemical Thermodynamics, 46: 62–71. doi:10.1016/j.jct.2011.10.006.
  • Shifeng, L.; Shuanshi, F.; Jinqu, W.; Xuemei, L.; Yanhong, W. 2010 Clathrate hydrate capture of CO2 from simulated flue gas with cyclopentane/water emulsion. Chinese Journal of Chemical Engineering, 18 (2): 202–206. doi:10.1016/S1004-9541(08)60343-2.
  • Xu, C.-G.; Li, X.-S.; Lv, Q.-N.; Chen Z-Y, C.J. 2012 Hydrate-based CO2 (carbon dioxide) capture from IGCC (integrated gasification combined cycle) synthesis gas using bubble method with a set of visual equipment. Energy, 44 (1): 358–366. doi:10.1016/j.energy.2012.06.021.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.