280
Views
16
CrossRef citations to date
0
Altmetric
Nanotechnology

Experimental study on CO2 hydrate formation in the presence of TiO2, SiO2, MWNTs nanoparticles

, , , &
Pages 2498-2506 | Received 09 Jan 2018, Accepted 12 Nov 2018, Published online: 21 Nov 2018

References

  • Wang, J.Y.; Xu, S.S. (2014) CO2 capture R&D proceedings in China Huaneng group. International Journal of Coal Science & Technology, 1 (1): 129–134. doi:10.1007/s40789-014-0013-6
  • House, K.Z.; Harvey, C.F.; Aziz, M.J.; Schrag, D.P. (2009) The energy penalty of post-combustion CO2 capture & storage and its implications for retrofitting the U.S. installed base. Energy & Environmental Science, 2 (2): 193–205. doi:10.1039/b811608c
  • Wanga, M.; Lawala, A.; Stephensonb, P.; Sidders, J.; Ramshawa, C. (2011) Post-combustion CO2 capture with chemical absorption: a state-of-the-art review. Chemical Engineering Research & Design, 89 (9): 1609–1624. doi:10.1016/j.cherd.2010.11.005
  • Yang, M.J.; Song, Y.C.; Jiang, L.L.; Zhao, Y.C.; Ruan, X.K.; Zhang, Y.; Wang, S.R. (2014) Hydrate-based technology for CO2 capture from fossil fuel power plants. Applied Energy, 116 (1): 26–40. doi:10.1016/j.apenergy.2013.11.031
  • Ricaurte, M.; Dicharry, C.; Broseta, D.; Renaud, X.; Torre, J.P. (2013) CO2 removal from a CO2–CH4 gas mixture by clathrate hydrate formation using THF and SDS as water-soluble hydrate promoters. Industrial & Engineering Chemistry Research, 52 (2): 899–910. doi:10.1021/ie3025888
  • Linga, P.; Kumar, R.; Lee, J.D.; Ripmeester, J.; Englezos, P. (2010) A new apparatus to enhance the rate of gas hydrate formation: application to capture of carbon dioxide. International Journal of Greenhouse Gas Control, 4 (4): 630–637. doi:10.1016/j.ijggc.2009.12.014
  • Luo, Y.T.; Zhu, J.H.; Chen, G.J. (2007) Numerical simulation of separating gas mixtures via hydrate formation in bubble column. Chinese Journal of Chemical Engineering, 15 (3): 345–352. doi:10.1016/S1004-9541(07)60091-3
  • Li, A.R.; Jiang, L.L.; Tang, S.Y. (2017) An experimental study on carbon dioxide hydrate formation using a gas-inducing agitated reactor. Energy, 134: 629–637. doi:10.1016/j.energy.2017.06.023
  • Choi, J.W.; Chung, J.T.; Kang, Y.T. (2014) CO2 hydrate formation at atmospheric pressure using high efficiency absorbent and surfactants. Energy, 78: 869–876. doi:10.1016/j.energy.2014.10.081
  • Veluswamy, H.P.; Kumar, S.; Kumar, R.; Rangsunvigit, P.; Linga, P. (2016) Enhanced clathrate hydrate formation kinetics at near ambient temperatures and moderate pressures: application to natural gas storage. Fuel, 182 (15): 907–917. doi:10.1016/j.fuel.2016.05.068
  • Jiang, L.L.; Li, A.R.; Xu, J.F.; Liu, Y.J. (2016) Effects of SDS and SDBS on CO2 hydrate formation, induction time, storage capacity and stability at 274.15 K and 5.0 MPa.g. ChemistrySelect, 1 (19): 6111–6114. doi:10.1002/slct.201601038
  • Li, J.P.; Liang, D.Q.; Guo, K.H.; Wang, R.Z.; Sh.Sh, F. (2006) Formation and dissociation of HFC134a gas hydrate in nano-copper suspension. Energy Conversion and Management, 47 (2): 201–210. doi:10.1016/j.enconman.2005.03.018
  • Choi, S.U.S.; Eastman, J.A. (1995) Enhancing thermal conductivity of fluids with nanoparticles. Asme Fed, 231: 99–105.
  • Ma, S.; Pan, Z.; Li, P.; Wu, Y.; Li, B. (2017) Experimental study on preparation of natural gas hydrate by crystallization. China Pet Process PE, 19: 106–113.
  • Arjang, S.; Manteghian, M.; Mohammadi, A. (2013) Effect of synthesized silver nanoparticles in promoting methane hydrate formation at 4.7 MPa and 5.7 MPa. Chemical Engineering Research & Design, 91 (6): 1050–1054. doi:10.1016/j.cherd.2012.12.001
  • Mohammadi, A.; Manteghian, M.; Haghtalab, A.; Mohammadi, A.H.; Rahmati-Abkenar, M. (2014) Kinetic study of carbon dioxide hydrate formation in presence of silver nanoparticles and SDS. Chemical Engineering Journal, 237: 387–395. doi:10.1016/j.cej.2013.09.026
  • Najibi, H.; Shayegan, M.M.; Hassan, H. (2015) Experimental investigation of methane hydrate formation in the presence of copper oxide nanoparticles and SDS. Gas Science and Engineering, 23: 315–323. doi:10.1016/j.jngse.2015.02.009
  • Moraveji, M.K.; Golkaram, M.; Davarnejad, R. (2013) Effect of CuO nanoparticle on dissolution of methane in water. Journal of Molecular Liquids, 180: 45–50. doi:10.1016/j.molliq.2012.12.014
  • Aliabadi, M.; Rasoolzadeh, A.; Esmaeilzadeh, F.; Alamdari, A.M. (2015) Experimental study of using CuO nanoparticles as a methane hydrate promoter. Journal of Natural Gas Science and Engineering, 27: 1–5. doi:10.1016/j.jngse.2015.10.017
  • Mohammadi, M.; Haghtalab, A.; Fakhroueian, Z. (2016) Experimental study and thermodynamic modeling of CO2 gas hydrate formation in presence of zinc oxide nanoparticles. The Journal of Chemical Thermodynamics, 96 (4): 24–33. doi:10.1016/j.jct.2015.12.015
  • Park, S.S.; An, E.J.; Lee, S.B.; Chun, W.G.; Kim, N.J. (2012) Characteristics of methane hydrate formation in carbon nanofluids. Journal of Industrial and Engineering Chemistry, 18 (1): 443–448. doi:10.1016/j.jiec.2011.11.045
  • Klauda, J.B.; Sandler, S.I. (2000) A fugacity model for gas hydrate phase equilibria. Industrial & Engineering Chemistry Research, 39: 3377–3386. doi:10.1021/ie000322b
  • Yu, Y.S.; Zhou, S.D.; Li, X.S.; Wang, S.L. (2016) Effect of graphite nanoparticles on CO2 hydrate phase equilibrium. Fluid Phase Equilibria, 414: 23–28. doi:10.1016/j.fluid.2015.12.054
  • Chaouachi, M.; Falenty, A.; Sell, K.; Enzmann, F.; Kersten, M.; Haberthür, D.; Kuhs, W. (2015) Microstructural evolution of gas hydrates in sedimentary matrices observed with synchrotron X-ray computed tomographic microscopy. Geochemistry, Geophysics, Geosystems, 16: 1711–1722. doi:10.1002/2015GC005811
  • Kuang, Y.; Lei, X.; Yang, L.; Zhao, Y.; Zhao, J. (2018) Observation of In Situ growth and decomposition of Carbon Dioxide Hydrate at Gas–water interfaces using magnetic resonance imaging. Energy & Fuels : an American Chemical Society Journal, 32: 6964–6969. doi:10.1021/acs.energyfuels.8b01034
  • Zhou, S.D.; Yu, Y.S.; Zhao, M.M.; Wang, S.L.; Zhang, G.Z. (2014) Effect of graphite nanoparticles on promoting CO2 hydrate formation. Energy & Fuels : an American Chemical Society Journal, 28 (7): 4694–4698. doi:10.1021/ef5000886

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.