287
Views
30
CrossRef citations to date
0
Altmetric
Articles

Adsorption of Eu(III), Th(IV), and U(VI) by mesoporous solid materials bearing sulfonic acid and sulfamic acid functionalities

, , &
Pages 2609-2624 | Received 10 Apr 2018, Accepted 12 Nov 2018, Published online: 03 Dec 2018

References

  • Lu, Z.; Hao, Z.; Wang, J.; Chen, L. (2015) Efficient removal of europium from aqueous solutions using attapulgite-iron oxide magnetic composites. Journal of Industrial and Engineering Chemistry, 34: 374–381. DOI: 10.1016/j.jiec.2015.12.013.
  • Petrov, V.G.; Perfiliev, Y.D.; Dedushenko, S.K.; Kuchinskaya, T.S.; Kalmykov, S.N. (2016) Radionuclide removal from aqueous solutions using potassium ferrate(VI). Journal of Radioanalytical and Nuclear Chemistry, 310: 347–352. DOI: 10.1007/s10967-016-4867-5.
  • Gryntakis, G.; Cullen, D.E.; Mundy, G. (1987) Handbook on Nuclear Activation Data, IAEA: Vienna.
  • Marinsky, J.A.; Marcus, Y. (1974) Ion Exchange and Solvent Extraction, Marcel Dekker: New York.
  • Dam, H.H.; Reinhoudt, D.N.; Verboom, W. (2007) Multidentate ligands for actinide/lanthanide separations. Chemical Society Reviews, 36: 367–377. DOI: 10.1039/B603847F.
  • Fan, Q.H.; Zhao, X.L.; Ma, X.X.; Yang, Y.B.; Wu, W.S.; Zheng, G.D.; Wang, D.L. (2015) Comparative adsorption of Eu(III) and Am(III) on TPD. Environmental Science: Processes & Impacts, 17: 1634.
  • Cadogan, E.I.; Lee, C.H.; Popuri, S.R. (2015) Facile synthesis of chitosan derivatives and Arthrobacter sp. Biomass for the removal of europium(III) ions from aqueous solution through biosorption. Journal International Biodeterioration & Biodegradation, 102: 286–297. DOI: 10.1016/j.ibiod.2015.01.018.
  • Anirudhan, T.S.; Suchithra, P.S.; Senan, P.; Tharun, A.R. (2012) Kinetic and equilibrium profiles of adsorptive recovery of thorium(IV) from aqueous solutions using poly (methacrylic acid) grafted cellulose/bentonite superabsorbent composite. Industrial & Engineering Chemistry Research, Vol. 51, 4825.
  • Rao, T.P.; Metilda, P.; Gladis, J.M. (2006) Preconcentration techniques for uranium(VI) and thorium(IV) prior to analytical determination—an overview. Talanta, 68: 1047–1064. DOI: 10.1016/j.talanta.2005.07.021.
  • Sprynskyy, M.; Kovalchuk, I.; Buszewski, B. (2010) The separation of uranium ions by natural and modified diatomite from aqueous solution. Journal of Hazardous Materials, 181: 700–707. DOI: 10.1016/j.jhazmat.2010.05.069.
  • Yakout, S.M.; Abdeltawab, A.A. (2015) Adsorption of uranium in the presence of different ions, humic acid and effect of thorium on uranium adsorption by activated carbon. Desalination and Water Treatment, 55: 2209.
  • Basu, H.; Singhal, R.K.; Pimple, M.V.; Reddy, A.V.R. (2015) Synthesis and characterization of silica microsphere and their application in removal of uranium and thorium from water. International Journal of Environmental Science and Technology, 12: 1899.
  • Hadjittofi, L.; Pashalidis, I. (2016) Thorium removal from acidic aqueous solutions by activated biochar derived from cactus fibers. Desalination and water treatment, 57: 27864.
  • Zhao, F.; Repo, E.; Meng, Y.; Wang, X.; Yin, D.; Sillanpää, M. (2016) An EDTA–b–cyclodextrin material for the adsorption of rare earth elements and its application in preconcentration of rare earth elements in seawater. Journal of colloid and interface science, 465: 215.
  • Anastopoulos, I.; Bhatnagar, A.; Limac, E.C. (2016) Adsorption of rare earth metals: A review of recent literature. Journal of Molecular Liquids, 221: 954–962. DOI: 10.1016/j.molliq.2016.06.076.
  • Chaudhuri, H.; Dash, S.; Sarkar, A. (2016) SBA–15 functionalised with high loading of amino or carboxylate groups as selective adsorbent for enhanced removal of toxic dyes from aqueous solution. New Journal of Chemistry, 40: 3622–3634. DOI: 10.1039/C5NJ02816G.
  • Wilson, G.R.; Sharma, A.; Sachdev, D.; Dubey, A. (2016) Ferulic acid functionalized mesoporous silica polymer nanocomposites (SBA/FA) for the adsorption of Cr(VI). The Journal of Porous Materials, 23: 195–200. DOI: 10.1007/s10934-015-0070-2.
  • He, S.; Han, C.; Wang, H.; Zhu, W.; He, S.; He, D.; Luo, Y. (2015) Uptake of Arsenic(V) using alumina functionalized highly ordered mesoporous SBA-15 (Alx–SBA–15) as an effective adsorbent. Journal of Chemical & Engineering Data, 60: 1300–1310. DOI: 10.1021/je500978k.
  • Zhao, S.L.; Chen, F.S.; Zhang, J.; Ren, S.B.; Liang, H.D.; Li, S.S. (2015) On–line flame AAS determination of traces Cd(II) and Pb(II) in water samples using thiol-functionalized SBA–15 as solid phase extractant. Industrial & Engineering Chemistry, 27: 362–367. DOI: 10.1016/j.jiec.2015.01.015.
  • Jorgetto, A.O.; Pereira, S.P.; Silva, R.I.V.; Saeki, M.J.; Martines, M.A.U.; Pedrosa, V.A.; Castro, G.R. (2015) Application of Mesoporous SBA–15 Silica Functionalized with 4–amino–2–mercaptopyrimidine for the Adsorption of Cu(II), Zn(II), Cd(II), Ni(II), and Pb(II) From Water. Acta Chimica Slovenica, 62: 111.
  • Mureseanu, M.; Reiss, A.; Stefanescu, I.; David, E.; Parvulescu, V.; Renard, G.; Hulea, V. (2008) Modified SBA-15 mesoporous silica for heavy metal ions remediation. Chemosphere, 73: 1499–1504. DOI: 10.1016/j.chemosphere.2008.07.039.
  • Hajiaghababaei, L.; Badiei, A.; Ganjali, M.R.; Heydari, S.; Khanian, Y.; Ziarani, G.M. (2011) Highly efficient removal and preconcentration of lead and cadmium cations from water and wastewater samples using ethylenediamine functionalized SBA–15. Desalination, 266: 182–187. DOI: 10.1016/j.desal.2010.08.024.
  • Huang, J.; Ye, M.; Qu, Y.; Chu, L.; Chen, R.; He, Q.; Xu, D. (2012) Pb(II) removal from aqueous media by EDTA-modified mesoporous silica SBA–15. Journal of Colloid and Interface Science, 385: 137–146. DOI: 10.1016/j.jcis.2012.06.054.
  • Asgari, M.S.; Zonouzi, A.; Rahimi, R.; Rabbani, M. (2015) Application of porphyrin modified SBA–15 in adsorption of lead ions from aqueous media. Oriental Journal of Chemistry, 31: 1537. DOI: 10.13005/ojc/310331.
  • Hami Dindar, M.; Yaftian, M.R.; Rostamnia, S. (2015) Potential of functionalized SBA–15 mesoporous materials for decontamination of water solutions from Cr(VI), As(V) and Hg(II) ions. Journal of Environmental Chemical Engineering, 3: 986–995. DOI: 10.1016/j.jece.2015.03.006.
  • Hami Dindar, M.; Yaftian, M.R.; Hajihasani, M.; Rostamnia, S. (2016) Refinement of contaminated water by Cr(VI), As(V) and Hg(II) using N–donor ligands arranged on SBA–15 platform; batch and fixed–bed column methods. Journal of the Taiwan Institute of Chemical Engineers, 67: 325–337. DOI: 10.1016/j.jtice.2016.07.042.
  • Liu, Y.; Yuan, L.; Yuan, Y.; Lan, J.; Li, Z.; Feng, Y.; Zhao, Y.; Chai, Z.; Shi, W. (2012) A high efficient sorption of U(VI) from aqueous solution using amino-functionalized SBA–15. Journal of Radioanalytical and Nuclear Chemistry, 292: 803. DOI: 10.1007/s10967-011-1515-y.
  • Wang, Y.L.; Zhu, L.; Guo, B.L.; Chen, S.W.; Wu, W.S. (2014) Mesoporous silica SBA–15 functionalized with phosphonate derivatives for uranium uptake. New Journal of Chemistry, 38: 3853–3861. DOI: 10.1039/C3NJ01494K.
  • Guo, X.; Feng, Y.; Ma, L.; Gao, D.; Jing, J.; Yu, J.; Sun, H.; Gong, H.; Zhang, Y. (2017) Phosphoryl functionalized mesoporous silica for uranium adsorption. Applied Surface Science, 402: 53. DOI: 10.1016/j.apsusc.2017.01.050.
  • Zhang, W.; Ye, G.; Chen, J. (2016) New insights into the uranium adsorption behavior of mesoporous SBA–15 silicas decorated with alkylphosphine oxide ligands. RSC Advances, 6: 1210–1217. DOI: 10.1039/C5RA21636B.
  • Ren, Y.M.; Yang, R.; Shao, L.; Tang, H.; Wang, S.; Zhao, J.; Zhong, J.R.; Kong, C. (2016) Removal of aqueous uranium by SBA–15 modified with 2 phosphoramide: a combined experimental and DFT study. RSC Advances, 6: 68695. DOI: 10.1039/C6RA12269H.
  • Ji, G.; Zhu, G.; Wang, X.; Wei, Y.; Yuan, J.; Gao, C. (2017) Preparation of amidoxime functionalized SBA–15 with platelet shape and adsorption property of U (VI). Separation and Purification Technology, 174: 455. DOI: 10.1016/j.seppur.2016.10.048.
  • Wang, Y.L.; Song, L.J.; Zhu, L.; Guo, B.L.; Chen, S.W.; Wu, W.S. (2014) Removal of uranium(VI) from aqueous solution using iminodiacetic acid derivative functionalized SBA–15 as adsorbents. Dalton Transactions, 43: 3739. DOI: 10.1039/c3dt52610k.
  • Dolatyari, L.; Yaftian, M.R.; Rostamnia, S. (2016) Removal of uranium (VI) ions from aqueous solutions using Schiff base functionalized SBA–15 mesoporous silica materials. Journal of Environmental Management, 169: 8. DOI: 10.1016/j.jenvman.2015.12.005.
  • Dolatyari, L.; Yaftian, M.R.; Rostamnia, S. (2016) Adsorption characteristics of Eu(III) and Th(IV) ions onto modified mesoporous silica SBA–15 sorbents. Journal of the Taiwan Institute of Chemical Engineers, 60: 174–184. DOI: 10.1016/j.jtice.2015.11.004.
  • Dolatyari, L.; Yaftian, M.R.; Rostamnia, S. (2017) Fixed–bed column dynamic studies and breakthrough curve analysis of Eu(III) ion adsorption onto chemically modified SBA–15 silica materials. Separation Science and Technology, 52 (3): 393–403. DOI: 10.1080/01496395.2016.1250781.
  • Dolatyari, L.; Yaftian, M.R.; Rostamnia, S. (2018) Adsorption of Th(IV) and U(VI) on functionalized SBA–15 mesoporous silica materials using fixed bed column method; breakthrough curves prediction and modeling. Separation Science and Technology, 53 (9): 1282–1294. DOI: 10.1080/01496395.2018.1444055.
  • Chan, G.Y.S.; Drew, M.G.B.; Hudson, M.J.; Iveson, P.B.; Liljenzin, J.O.; Skålberg, M.; Spjuth, L.; Madic, C. (1997) Solvent extraction of metal ions from nitric acid solution using N,N’-substituted malonamides. Experimental and crystallographic evidence for two mechanisms of extraction, metal complexation and ion-pair formation. Journal of the Chemical Society, Dalton Transactions, 4: 649–660. DOI: 10.1039/a605577j.
  • Spjuth, L.; Liljenzin, J.O.; Skålberg, M.; Hudson, M.J.; Chan, G.Y.S.; Drew, M.G.B.; Feaviour, M.; Iveson, P.B.; Madic, C. (1997) Extraction of actinides and lanthanides from nitric acid solution by malonamides. Radiochimica Acta, 78: 39. DOI: 10.1524/ract.1997.78.special-issue.39.
  • Rostamnia, S.; Hassankhani, A. (2014) Covalently bonded ionic liquid–type sulfamic acid onto SBA–15: SBA-15/NHSO3Has a highly active, reusable, and selective green catalyst for solvent–free synthesis of Polyhydroquinolines and Dihydropyridines. Journal Syntheses Letter, 25: 2753.
  • Rostamnia, S.; Xin, H.; Liu, X.; Lamei, K. (2013) Simultaneously application of SBA-15 sulfonic acid nanoreactor and ultrasonic irradiation as a very useful novel combined catalytic system: an ultra-fast, selective, reusable and waste-free green approach. Journal of Molecular Catalysis A: Chemical, 85: 374.
  • Li, Y.; Wang, C.; Guo, Z.; Liu, C.; Wu, W. (2014) Sorption of thorium(IV) from aqueous solutions by graphene oxide. Journal of Radioanalytical and Nuclear Chemistry, 299: 1683–1691. DOI: 10.1007/s10967-014-2956-x.
  • Zuo, L.; Yu, S.; Zhou, H.; Jiang, J.; Tian, X. (2011) Adsorption of Eu(III) from aqueous solution using mesoporous molecular sieve. Journal of Radioanalytical and Nuclear Chemistry, 288: 579–586. DOI: 10.1007/s10967-010-0972-z.
  • Marcus, Y.;. (1988) Ionic radii in aqueous solutions. Chemical Reviews, 88: 1475–1498. DOI: 10.1021/cr00090a003.
  • Guilbaud, P.; Wipff, G. (1993) Hydration of UO22+ cation and its NO3- and 18-crown-6 adducts studied by molecular dynamics simulations. Journal of Physical Chemistry, 97: 5685–5692. DOI: 10.1021/j100123a037.
  • Yan, L.; Qiaohui, F.; Wangsuo, W. (2011) Sorption of Th(IV) on goethite: effects of pH, ionic strength, FA and phosphate. Journal of Radioanalytical and Nuclear Chemistry, 289: 865–871. DOI: 10.1007/s10967-011-1166-z.
  • Sharma, P.; Sharma, M.; Tomar, R. (2013) Na–HEU zeolite synthesis for the removal of Th(IV) and Eu(III) from aqueous waste by batch process. Journal of the Taiwan Institute of Chemical Engineers, 44: 480–488. DOI: 10.1016/j.jtice.2012.12.009.
  • Sun, Y.; Wang, Q.; Chen, C.; Tan, X.; Wang, X. (2012) Interaction between Eu(III) and graphene oxide nanosheets investigated by batch and extended X–ray absorption fine structure spectroscopy and by modeling techniques, environ. Science & Technology, 46: 6020–6027. DOI: 10.1021/es300720f.
  • Fan, Q.H.; Shao, D.D.; Hu, J.; Chen, C.L.; Wu, W.S.; Wang, X.K. (2009) Adsorption of humic acid and Eu(III) to multi–walled carbon nanotubes: effect of pH, ionic strength and counter ion effect. Radiochimica Acta, 97: 141. DOI: 10.1524/ract.2009.1586.
  • Ho, Y.S.; McKay, G. (2002) Application of Kinetic Models to the Sorption of Copper(II) on to Peat. Advertising Science & Technology, 20: 797–815. DOI: 10.1260/026361702321104282.
  • Da’na, E.; Silva, N.D.; Sayari, A. (2011) Adsorption of copper on amine–functionalized SBA–15 prepared by co–condensation: kinetics properties. Chemical Engineering Journal, 166: 454–459. DOI: 10.1016/j.cej.2010.11.017.
  • Foo, K.Y.; Hameed, B.H. (2010) Insights into the modeling of adsorption isotherm systems. The Chemical Engineering Journal, 156: 2. DOI: 10.1016/j.cej.2009.09.013.
  • Moftakhar, M.K.; Dousti, Z.; Yaftian, M.R.; Ghorbanloo, M. (2016) Investigation of heavy metal ions adsorption behavior of silica-supported Schiff base ligands. Desalination Water Treat, 57: 27396–27408. DOI: 10.1080/19443994.2016.1170638.
  • Mellah, A.; Chegrouche, S.; Barkat, M. (2006) The removal of uranium(VI) from aqueous solutions onto activated carbon: kinetic and thermodynamic investigations. Journal of Colloid and Interface Science, 296: 434.
  • Sert, S.; Eral, M. (2010) Uranium adsorption studies on aminopropyl modified mesoporous sorbent (NH2–MCM-41) using statistical design method. Journal of Nuclear Materials, 406: 285–292. DOI: 10.1016/j.jnucmat.2010.08.024.
  • Wang, X.L.; Yuan, L.Y.; Wang, Y.F.; Li, Z.J.; Lan, J.H.; Liu, Y.L.; Feng, Y.X.; Zhao, Y.L.; Chai, Z.F.; Shi, W.Q. (2012) Mesoporous silica SBA-15 functionalized with phosphonate and amino groups for uranium uptake. Science China Chemistry, 55: 1705–1711. DOI: 10.1007/s11426-012-4625-7.
  • Liu, S.; Li, S.; Zhang, H.; Wu, L.; Sun, L.; Ma, J. (2016) Removal of uranium(VI) from aqueous solution using graphene oxide and its amine-functionalized composite. Journal of Radioanalytical and Nuclear Chemistry, 309: 607.
  • Kutahyal, C.; Eral, M. (2010) Sorption studies of uranium and thorium on activated carbon prepared from olive stones: kinetic and thermodynamic aspects. Journal of Nuclear Materials, 396: 251–256. DOI: 10.1016/j.jnucmat.2009.11.018.
  • Nilchi, A.; Dehaghan, T.S.; Garmarodi, S.R. (2013) Kinetics, isotherm and thermodynamics for uranium and thorium ions adsorption from aqueous solutions by crystalline tin oxide nanoparticles. Desalination, 321: 67–71. DOI: 10.1016/j.desal.2012.06.022.
  • Tana, X.; Fangc, M.; Li, J.; Lua, Y.; Wang, X. (2009) Adsorption of Eu(III) onto TiO2: effect of pH, concentration, ionic strength and soil fulvic acid. Journal of Hazardous Materials, 168: 458–465. DOI: 10.1016/j.jhazmat.2009.02.051.
  • Hu, J.; Xie, Z.; He, B.; Sheng, G.D.; Chen, C.L.; Li, J.X.; Chen, Y.X.; Wang, X.K. (2010) Sorption of Eu(III) on GMZ bentonite in the absence/presence of humic acid studied by batch and XAFS techniques. Science China Chemistry, 53: 1420–1428. DOI: 10.1007/s11426-010-3064-6.
  • Kaygun, A.K.; Akyil, S. (2007) Study of the behaviour of thorium adsorption on PAN/zeolite composite adsorbent. Journal of Hazardous Materials, 147: 251–256. DOI: 10.1016/j.jhazmat.2007.01.020.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.